中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 950-960 DOI: 10.7536/PC131250 Previous Articles   Next Articles

• Review •

Applications of Three Dimensional Graphene and Its Composite Materials

Zhou Guojun, Ye Zhikai, Shi Weiwei, Liu Jiyang, Xi Fengna*   

  1. Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21305127), the Science Foundation of Zhejiang Sci-Tech University(No.13062173-Y) and the 521 Talent Project of Zhejiang Sci-Tech University

PDF ( 4603 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, three dimensional (3D) graphene derived from 2D graphene assemblies, is an emerging functional material in the field of graphene chemistry. Integration of graphene sheets, two-dimensional (2D) nanoscale building blocks, into 3D assemblies which have well-defined 3D architecture, is an effective way for tuning and/or controlling the electrical, optical, chemical, mechanical or catalytical properties. As a novel kind of functional materials, the methodology for preparing 3D graphene materials with micro-/nano-architectures and the potential applications have triggered tremendous interests. The rationally designed 3D graphene architecture may not only provide inherently excellent properties of 2D graphene materials, such as high electronic, optical and catalytical properties, but also exhibit micro-/nano-architectures, huge specic surface areas, strong mechanical strengths, high electron conductivity and fast mass transport kinetics. Until now, 3D graphene materials have demonstrated superior performance when applied in nanoelectronics, energy storage/conversion, chemical and biological sensing, hybrid materials and other areas. In this article, we review recent advances of 3D graphene and its composite materials in the fields of catalysis, hydrogen/gas storage, sensor fabrication, environmental protection and supercapacity. The current challenges and future perspectives in the applications of 3D graphene materials are also outlined.

Contents
1 Introduction of 3D graphene materials
2 Preparation of 3D graphene architectures
3 Applications of 3D graphene and its composite materials
3.1 Applications as catalysis
3.2 Applications in hydrogen storage and other gases adsorption
3.3 Applications in fabrication of sensor
3.4 Applications in environmental remediation
3.5 Applications in fabrication of supercapacitor
4 Conclusion and outlook

CLC Number: 

[1] Yang X W, Zhu J W, Qiu L, Li Dan. Adv. Mater., 2011, 23:2833.
[2] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. Adv. Mater., 2012, 24:4144.
[3] Li C, Shi G Q. Nanoscale, 2012, 4:5549.
[4] Rajesh, Paul R K, Mulchandani A. J. Power Sources, 2013, 223:23.
[5] Hu C G, Cheng H H, Zhao Y, Hu Y, Liu Y, Dai L M, Qu L T. Adv. Mater., 2012, 24:5493.
[6] Yu D S, Wei L, Jiang W C, Wang H, Sun B, Zhang Q, Goh K, Si R M, Chen Y. Nanoscale, 2013, 5:3457.
[7] Ma Y W, Sun L Y, Huang W, Zhang L R, Zhao J, Fan Q L, Huang W. J. Phys. Chem. C, 2011, 115:24592.
[8] Wu Z S, Yang S B, Sun Y, Parvez K, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134:9082.
[9] Huang C C, Bai H, Li Chun, Shi G Q. Chem. Commun., 2011, 47:4962.
[10] He Y Q, Zhang N N, Gong Q J, Li Z L, Gao J P, Qiu H X. Mater. Chem. Phys., 2012, 134:585.
[11] Zhang L L, Xiong Z G, Zhao X S. ACS Nano, 2010, 4:7030.
[12] Wu C D, Fang T H, Lo J Y. Int. J. Hydrogen Energy, 2012, 37:14211.
[13] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8:3166.
[14] Wang Y, Guan C, Wang K, Guo C X, Li C M. J. Chem. Eng. Data, 2011, 56:642.
[15] Wang Y, Guo C X, Wang X, Guan C, Yang H B, Wang K, Li C M. Energy Environ. Sci., 2011, 4:195.
[16] Kim G, Jhi S H. J. Phys. Chem. C, 2009, 113:20499.
[17] Dong X C, Wang X W, Wang L H, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[18] Xi F N, Zhao D J, Wang X W, Chen P. Electrochem. Commun., 2013, 26:81.
[19] Cao X H, Zeng Z Y, Shi W H, Yep P, Yan Q Y, Zhang H. Small, 2013, 9:1703.
[20] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6:3206.
[21] Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. J. Mater. Chem., 2012, 22:17044.
[22] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Adv., 2012, 2:4364.
[23] Chen L, Wang X J, Zhang X T, Zhang H M. J. Mater. Chem., 2012, 22:22090.
[24] Zhao B, Liu Z R, Fu W Y, Yang H B. Electronchem. Commun., 2013, 27:1.
[25] Wu J W, Wang C H, Wang Y C, Chang J K. Biosens. Bioelectron., 2013, 46:30.
[26] Li Z P, Wang J Q, Sheng L, Liu X H, Yang S R. J. Power Sources, 2011, 196:8160.
[27] Sun G Q, Lu J J, Ge S G, Song X R, Yu J H, Yan M, Huang J D. Anal. Chim. Acta, 2013, 775:85.
[28] Chen H C, Tsai R Y, Chen Y H, Lee R S, Hua M Y. Anal. Chim. Acta, 2013, 729:101.
[29] Sun W, Cao L L, Deng Y, Gong S X, Shi F, Li G N, Sun Z F. Anal. Chim. Acta, 2013, 781:41.
[30] Xi Q, Chen X, Evans D G, Yang W S. Langmuir, 2012, 28:9885.
[31] Chen J L, Zheng X L, Miao F J, Zhang J N, Cui X Q, Zheng W T. J. Appl. Electrochem., 2012, 42:875.
[32] Xiao X Y, Michael J R, Beechem T, McDonald A, Rodriguez M, Brumbach M T, Lambert T N, Washburn C M, Wang J, Brozik S M, Wheeler D R, Burckel D B, Polsky R. J. Mater. Chem., 2012, 22:23749.
[33] Xiao F, Li Y Q, Zan X L, Liao K, Xu R, Duan H W. Adv. Funct. Mater., 2012, 22:2487.
[34] Yavari F, Chen Z P, Thomas A V, Ren W C, Cheng H M, Koratkar N. Sci. Res., 2011, 1:166.
[35] Lin Q Q, Yang L, Yang M J. Sens. Actuators, B, 2012, 173:139.
[36] Ng S H, Guo C X, Li C M. Electroanal., 2011, 23:442.
[37] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. Adv. Mater., 2012, 24:4144.
[38] Li H, Liu L F, Yang F L. J. Mater. Chem. A, 2013, 1:3446.
[39] Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsian R, Tiwari R N, Kim K S. Carbon, 2013, 56:173.
[40] Dong X C, Chen J, Ma Y W, Wang J, Chen-Park M B, Liu X M, Wang L H, Huang W, Chen P. Chem. Commun., 2012, 48:10660.
[41] Wei G, Miao Y E, Zhang C, Yang Z, Liu Z Y, Tjiu W W, Liu T. ACS Appl. Mater. Interfaces, 2013, 5:7584.
[42] Wang J L, Shi Z X, Fan J C, Ge Y, Yin J, Hu G X. J. Mater. Chem., 2012, 22:22459.
[43] Li K X, Chen T, Yan L S, Dai Y H, Huang Z M, Guo H Q, Jiang L X, Gao X H, Xiong J J, Song D Y. Catal. Commun., 2012, 28:196.
[44] Zhang Z Y, Xiao F, Guo Y L, Wang S, Liu Y Q. ACS Appl. Mater. Interfaces, 2013, 5:2227.
[45] Hou C Y, Zhang Q H, Li Y G, Wang H Z. J. Hazard. Mater., 2012, 205/206:229.
[46] Cheng J S, Du J, Zhu W J. Carbohydr. Polym., 2012, 88:617.
[47] Zhang S, Shao Y Y, Liu J, Aksay I A, Lin Y H. ACS Appl. Mater. Interfaces, 2011, 3:3633.
[48] Gao H C, Sun Y M, Zhou J J, Xu R, Duan H W. ACS Appl. Mater. Interfaces 2013, 5, 425.
[49] Miller J R, Outlaw R A, Holloway B C. Science, 2010, 329:1637.
[50] Sheng K X, Sun Y Q, Li C, Yuan W J, Shi G Q. Sci. Res., 2012, 2:247.
[51] Zhang L, Shi G Q. J. Phys. Chem. C, 2011, 115:17206.
[52] Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X L, Müllen K. Adv. Mater., 2012, 24:513.
[53] Li Z P, Wang J Q, Sheng L, Liu X H, Yang S R. J. Power Sources, 2011, 196:8160.
[54] Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Chan-Park M B, Li C M, Chen P. Carbon, 2012, 50:4865.
[55] Choi B G, Yang M H, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6:4020.
[56] Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. ACS Nano, 2010, 4:5835.
[57] Zhai T, Wang F X, Yu M H, Xie S L, Liang C L, Li C, Xiao F M, Tang R H, Wu Q X, Lu X H, Tong Y X. Nanoscale, 2013, 5:6790.
[58] Wang B, Park J, Su D W, Wang C Y, Ahn H, Wang G X. J. Mater. Chem., 2012, 22:15750.
[59] Wang H L, Holt C M B, Li Z, Tan X H, Amirkhiz B S, Xu Z W, Olsen B C, Stephenson T, Mitlin D. Nano Res. 2012, 5:605.
[60] Xu Y X, Huang X Q, Lin Z Y, Zhong X, Huang Y, Duan X F. Nano. Res., 2013, 6:65.
[61] Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, Zhang Q C, Zhang H. Small, 2011, 7:3163.
[62] Zhou W J, Cao X H, Zeng Z Y, Shi W H, Zhu Y Y, Yan Q Y, Liu H, Wang J Y, Zhang H. Energy Environ. Sci., 2013, 6:2216.
[63] Leng K, Zhang F, Zhang L, Zhang T F, Wu Y P, Lu Y H, Huang Y, Chen Y S. Nano. Res., 2013, 6:581.
[64] Dong X C, Wang J X, Wang J, Chan-Park M B, Li X G, Wang L H, Huang W, Chen P. Mater. Chem. Phys., 2012, 134:576.
[65] Tai Z X, Yan X B, Xue Q J. J. Electrochem. Soc., 2012, 159:A1702.
[66] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Advances, 2012, 2:4364.
[67] Chen C M, Zhang Q, Huang C H, Zhao X C, Zhang B S, Kong Q Q, Wang M Z, Yang Y G, Cai R, Su D S. Chem. Commun., 2012, 48:7149.
[68] Fan Z J, Yan J, Zhi L J, Zhang Q, Wei T, Feng J, Zhang M, Qian W Z, Wei F. Adv. Mater. 2010, 22:3723.
[69] Lin J, Zhang C G, Yan Z, Zhu Y, Peng Z W, Hauge R. H., Natelson D, Tour J M. Nano Lett., 2013, 13:72.
[70] Xu Z W, Li Z, Holt C M B, Tan X H, Wang H L, Amirkhiz B S, Stephenson T, Mitlin D. J. Phys. Chem. Lett., 2012, 3:2928.
[71] You B, Wang L L, Yao L, Yang J. Chem. Commun., 2013, 49:5016.
[72] Li S M, Wang Y S, Yang S Y, Liu C H, Chang K H, Tien H W, Wen N T, M. Ma C C, Hu C C. J. Power Sources, 2013, 225:347.
[73] Du F, Yu D S, Dai L M, Varshney S G V, Roy A K. Chem. Mater., 2011, 23:4810.
[74] Ye S B, Feng J C, Wu P Y. ACS Appl. Mater. Interfaces, 2013, 5:7122.
[75] Si P, Ding S J, Lou X W, Kim D H. RSC Adv., 2011, 1:1271.
[76] Wang Y, Guo C X, Wang X, Guan C, Yang H B, Wang K, Li C M. Energy Environ. Sci., 2011, 4:195.
[77] Ning G Q, Li T Y, Yan J, Xu C G, Wei T, Fan Z J. Carbon, 2013, 54:241.
[78] Cheng Q, Tang J, Shinya N, Qin L C. J. Power Sources, 2013, 241:423.
[79] Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y, Duan X F. ACS Nano, 2013, 7:4042.
[80] Shao Y L, Wang H Z, Zhang Q H, Li Y G. J. Mater. Chem. C, 2013, 1:1245.
[81] Zhang B W, Yu B, Zhou F, Liu W M. J. Mater. Chem. A, 2013, 1:8587.
[82] Meng Y N, Zhao Y, Hu C G, Cheng H H, Hu Y, Zhang Z P, Shi G Q, Qu L T. Adv. Mater. 2013, 25:2326.

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[7] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[8] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[9] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[10] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[11] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[12] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[13] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[14] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[15] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.