中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 931-938 DOI: 10.7536/PC131236 Previous Articles   Next Articles

• Review •

Optical Chemical Sensor Array Based on Functional Nanomaterials

Lu Yuexiang*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21390413)

PDF ( 1802 ) Cited
Export

EndNote

Ris

BibTeX

A sensor array is an artificial olfactory system based on the array analysis method. On an array, information from different sensing units could be collected simultaneously, which improves the analysis efficiency of the sensors. This high-throughput sensing mode has broad application prospect in the areas such as public safety, environmental monitoring and medical diagnosis. Among different kinds of sensor arrays, optical chemical sensor arrays have attracted much attention because of their high sensitivity and abundant output signal types. In recent years, for further improving the identification ability and sensitivity of the arrays, functional nanomaterials have been widely applied in optical chemical sensor arrays for increasing sensing materials and developing new sensing methods. The present review introduces the applications of functional nanomaterials in optical sensor arrays which can be classified into fluorescent arrays, colorimetric arrays, cataluminescence arrays and multidimensional arrays according to the type of spectroscopic detection technology.

Contents
1 Introduction
2 Fluorescent sensor array
2.1 Sensor array based on gold nanoparticles
2.2 Sensor array based on fluorescent gold nanoclusters
2.3 Sensor array based on graphene
3 Colorimetric sensor array
3.1 Sensor array based on nanoporous pigments
3.2 Sensor array based on gold nanoparticles
3.3 Sensor array based on peroxidase mimic enzyme
4 Cataluminescence sensor array
5 Multidimensional sensor array
6 Conclusion and outlook

CLC Number: 

[1] Albert K J, Lewis N S, Schauer C L, Sotzing G A, Stitzel S E, Vaid T P, Walt D R. Chem. Rev., 2000, 100: 2595.
[2] Strike D J, Meijerink M G H, Koudelka-Hep M. Fresenius Journal of Analytical Chemistry, 1999, 364: 499.
[3] LaFratta C N, Walt D R. Chem. Rev., 2008, 108: 614.
[4] Askim J R, Mahmoudi M, Suslick K S. Chem. Soc. Rev., 2013, 42: 8649.
[5] Anzenbacher P Jr, Lubal P, Bucek P, Palacios M A, Kozelkova M E. Chem. Soc. Rev., 2010, 39: 3954.
[6] Jans H, Huo Q. Chem. Soc. Rev., 2012, 41: 2849.
[7] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112: 2739.
[8] You C C, Miranda O R, Gider B, Ghosh P S, Kim I B, Erdogan B, Krovi S A, Bunz U H F, Rotello V M. Nat. Nanotechnol., 2007, 2: 318.
[9] Adkins J N, Varnum S M, Auberry K J, Moore R J, Angell N H, Smith R D, Springer D L, Pounds J G. Mol. Cell. Proteomics, 2002, 1: 947.
[10] Pieper R, Gatlin C L, Makusky A J, Russo P S, Schatz C R, Miller S S, Su Q, McGrath A M, Estock M A, Parmar P P, Zhao M, Huang S T, Zhou J, Wang F, EsquerBlasco R, Anderson N L, Taylor J, Steiner S. Proteomics, 2003, 3: 1345.
[11] Antman E M, Tanasijevic M J, Thompson B, Schactman M, McCabe C H, Cannon C P, Fischer G A, Fung A Y, Thompson C, Wybenga D, Braunwald E. New Engl. J. Med., 1996, 335: 1342.
[12] De M, Rana S, Akpinar H, Miranda O R, Arvizo R R, Bunz U H F, Rotello V M. Nat. Chem., 2009, 1: 461.
[13] Hayden S C, Zhao G, Saha K, Phillips R L, Li X, Miranda O R, Rotello V M, El-Sayed M A, Schmidt-Krey I, Bunz U H F. J. Am. Chem. Soc., 2012, 134: 6920.
[14] Bajaj A, Miranda O R, Phillips R, Kim I B, Jerry D J, Bunz U H F, Rotello V M. J. Am. Chem. Soc., 2010, 132: 1018.
[15] Miranda O R, Chen H T, You C C, Mortenson D E, Yang X C, Bunz U H F, Rotello V M. J. Am. Chem. Soc., 2010, 132: 5285.
[16] Shang L, Dong S, Nienhaus G U. Nano Today, 2011, 6: 401.
[17] Lin C A J, Yang T Y, Lee C H, Huang S H, Sperling R A, Zanella M, Li J K, Shen J L, Wang H H, Yeh H I, Parak W J, Chang W H. ACS Nano, 2009, 3: 395.
[18] Liu Y, Ai K, Cheng X, Huo L, Lu L. Adv. Funct. Mater., 2010, 20: 951.
[19] Lin Y H, Tseng W L. Anal. Chem., 2010, 82: 9194.
[20] Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1193.
[21] Kong H, Lu Y, Wang H, Wen F, Zhang S, Zhang X. Anal. Chem., 2012, 84: 4258.
[22] Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2: 1015.
[23] Chou S S, De M, Luo J, Rotello V M, Huang J, Dravid V P. J. Am. Chem. Soc., 2012, 134: 16725.
[24] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20: 453.
[25] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43: 631.
[26] Pei H, Li J, Lv M, Wang J, Gao J, Lu J, Li Y, Huang Q, Hu J, Fan C. J. Am. Chem. Soc., 2012, 134: 13843.
[27] Rakow N A, Suslick K S. Nature, 2000, 406: 710.
[28] Suslick K S, Rakow N A, Sen A. Tetrahedron, 2004, 60: 11133.
[29] Rakow N A, Sen A, Janzen M C, Ponder J B, Suslick K S. Angew. Chem. Int. Ed., 2005, 44: 4528.
[30] Mazzone P J, Hammel J, Dweik R, Na J, Czich C, Laskowski D, Mekhail T. Thorax, 2007, 62: 565.
[31] Zhang C, Suslick K S. J. Am. Chem. Soc., 2005, 127: 11548.
[32] Lim S H, Feng L, Kemling J W, Musto C J, Suslick K S. Nat. Chem., 2009, 1: 562.
[33] Feng L, Musto C J, Kemling J W, Lim S H, Suslick K S. Chem. Commun., 2010, 46: 2037.
[34] Feng L, Musto C J, Kemling J W, Lim S H, Zhong W, Suslick K S. Anal. Chem., 2010, 82: 9433.
[35] Suslick B A, Feng L, Suslick K S. Anal. Chem., 2010, 82: 2067.
[36] Zhang C, Bailey D P, Suslick K S. J. Agric. Food Chem., 2006, 54: 4925.
[37] Zhang C, Suslick K S. J. Agric. Food Chem., 2007, 55: 237.
[38] Huang X, Xin J, Zhao J J. Food Eng., 2011, 105: 632.
[39] Salinas Y, Ros-Lis J V, Vivancos J L, Martinez-Manez R, Marcos M D, Aucejo S, Herranz N, Lorente I. Analyst, 2012, 137: 3635.
[40] Bang J H, Lim S H, Park E, Suslick K S. Langmuir, 2008, 24: 13168.
[41] Musto C J, Lim S H, Suslick K S. Anal. Chem., 2009, 81: 6526.
[42] Lin H, Suslick K S. J. Am. Chem. Soc., 2010, 132: 15519.
[43] Lin H, Jang M, Suslick K S. J. Am. Chem. Soc., 2011, 133: 16786.
[44] Carey J R, Susick K S, Hulkower K I, Imlay J A, Imlay K R C, Ingison C K, Ponder J B, Sen A, Wittrig A E. J. Am. Chem. Soc., 2011, 133: 7571.
[45] Ghosh S K, Pal T. Chem. Rev., 2007, 107: 4797.
[46] Halas N J, Lal S, Chang W S, Link S, Nordlander P. Chem. Rev., 2011, 111: 3913.
[47] Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111: 3736.
[48] Mayer K M, Hafner J H. Chem. Rev., 2011, 111: 3828.
[49] Boisselier E, Astruc D. Chem. Soc. Rev., 2009, 38: 1759.
[50] Cobley C M, Chen J, Cho E C, Wang L V, Xia Y. Chem. Soc. Rev., 2011, 40: 44.
[51] Lu Y, Liu Y, Zhang S, Wang S, Zhang S, Zhang X. Anal. Chem., 2013, 85: 6571.
[52] Yang X, Li J, Pei H, Li D, Zhao Y, Gao J, Lu J, Shi J, Fan C, Huang Q. Small, 2013, 9: 2844.
[53] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat. Nanotechnol., 2007, 2: 577.
[54] Asati A, Santra S, Kaittanis C, Nath S, Perez J M. Angew. Chem. Int. Ed., 2009, 48: 2308.
[55] Greene N T, Shimizu K D. J. Am. Chem. Soc., 2005, 127: 5695.
[56] Huang C C, Huang Y F, Cao Z H, Tan W H, Chang H T. Anal. Chem., 2005, 77: 5735.
[57] Jv Y, Li B, Cao R. Chem. Commun., 2010, 46: 8017.
[58] Li X, Wen F, Creran B, Jeong Y, Zhang X, Rotello V M. Small, 2012, 8: 3589.
[59] McCord P, Yau S L, Bard A J. Science, 1992, 257: 68.
[60] Zhang Z Y, Zhang C, Zhang X R. Analyst, 2002, 127: 792.
[61] Zhu Y F, Shi J J, Zhang Z Y, Zhang C, Zhang X R. Anal. Chem., 2002, 74: 120.
[62] Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. Adv. Mater., 2005, 17: 2993.
[63] Na N, Zhang S, Wang S, Zhang X. J. Am. Chem. Soc., 2006, 128: 14420.
[64] Wu Y, Na N, Zhang S, Wang X, Liu D, Zhang X. Anal. Chem., 2009, 81: 961.
[65] Kong H, Zhang S, Na N, Liu D, Zhang X. Analyst, 2009, 134: 2441.
[66] Kong H, Liu D, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1867.
[67] Kong H, Wang H, Zhang S, Zhang X. Analyst, 2011, 136: 3643.
[68] Wang X, Na N, Zhang S, Wu Y, Zhang X. J. Am. Chem. Soc., 2007, 129: 6062.
[69] Na N, Zhang S, Wang X, Zhang X. Anal. Chem., 2009, 81: 2092.
[70] Wu L, Zhang Y, Zhang S, Zhang X. Anal. Methods, 2012, 4: 2218.
[71] Hierlemann A, Gutierrez-Osuna R. Chem. Rev., 2008, 108: 563.
[72] Schmittel M, Lin H W. Angew. Chem. Int. Ed., 2007, 46: 893.
[73] Liu D, Liu M, Liu G, Zhang S, Wu Y, Zhang X. Anal. Chem., 2010, 82: 66.
[74] Wu P, Miao L N, Wang H F, Shao X G, Yan X P. Angew. Chem. Int. Ed., 2011, 50: 8118.
[75] Lu Y, Kong H, Wen F, Zhang S, Zhang X. Chem. Commun., 2013, 49: 81.
[76] Chen J L, Yan X P, Meng K, Wang S F. Anal. Chem., 2011, 83: 8787.
[77] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem. Int. Ed., 2010, 49: 5708.
[78] Chen J L, Yan X P. Chem. Commun., 2011, 47: 3135.
[79] Mei Q, Zhang K, Guan G, Liu B, Wang S, Zhang Z. Chem. Commun., 2010, 46: 7319.
[80] Song Y, Qu K, Zhao C, Ren J, Qu X. Adv. Mater., 2010, 22: 2206.
[81] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4: 4324.
[82] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4: 7358.

[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[4] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[5] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[6] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[7] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[8] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[9] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[10] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[11] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[12] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[13] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[14] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[15] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.