中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 1005-1020 DOI: 10.7536/PC131233 Previous Articles   Next Articles

• Review •

Single Lithium-Ion Conducting Solid Polymer Electrolytes

Zhang Heng1, Zheng Liping1, Nie Jin1, Huang Xuejie2, Zhou Zhibin*1   

  1. 1. Key Laboratory for Large-Format Battery Materials and System-Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 51172083)

PDF ( 2290 ) Cited
Export

EndNote

Ris

BibTeX

Single lithium-ion conductors (SLICs), which have anions covalently bonded to polymers or immobilized by anion acceptors, have been intensively studied. SLICs are generally accepted to have advantages over conventional salt-in-polymer electrolytes for application in lithium batteries due to the unity transference number and the absence of detrimental effect of anion polarization. By now, many types of SLICs have been reported, including organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this paper, progresses in SLICs are reviewed, which mainly focused on their electrochemical properties, especially those with high ionic conductivity and high lithium-ion transference number. The current challenges and future perspectives in this field are also prospected.

Contents
1 Introduction
2 Organic polymer-based single lithium-ion con-ductors
2.1 Single lithium-ion conductors based on lithium salts of ionomer without ion conduction matrix
2.2 Single lithium-ion conductors based on lithium salts of ionomer with ion conduction matrix
3 Organic-inorganic hybrid polymers
3.1 The siloxane-based single lithium-ion conductors
3.2 The aluminate and borate-based hybrid polymers
4 Anion acceptor
4.1 Lewis acid-based anion acceptor
4.2 Calixarene and their derivatives
5 Conclusions and outlook

CLC Number: 

[1] 骆蓉(Luo R), 聂进(Nie J). 功能高分子学报(Journal of Functional Polymers), 2004, 17:151.
[2] 董晓臣(Dong X C),王立(Wang L). 化学进展(Progress in Chemistry), 2005, 17:248.
[3] 程琥(Cheng H), 李涛(Li T), 杨勇(Yang Y). 化学进展(Progress in Chemistry), 2006, 18:543.
[4] 凌志军(Ling Z J), 何向明(He X M), 李建军(Li J J), 姜长印(Jiang C Y), 万春荣(Wan C R). 化学进展(Progress in Chemistry), 2006, 18:459.
[5] 陈伟(Chen W),张以河(Zhang Y H). 工程塑料应用(Engineering Plastics Application), 2010, 38:89.
[6] 张恒(Zhang H), 周志彬(Zhou Z B), 聂进(Nie J). 化学进展(Progress in Chemistry), 2013, 25:761.
[7] Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14:589.
[8] Angell C A, Liu C, Sanchez E. Nature, 1993, 362:137.
[9] Doyle M, Fuller T F, Newman J. Electrochim. Acta, 1994, 39:2073.
[10] Thomas K E, Sloop S E, Kerr J B, Newman J. J. Power Sources, 2000, 89:132.
[11] Bannister D J, Davies G R, Ward I M, McIntyre J E. Polymer, 1984, 25:1291.
[12] Hardy L C, Shriver D F. Macromolecules, 1984, 17:975.
[13] Hardy L C, Shriver D F. J. Am. Chem. Soc., 1985, 107:3823.
[14] Kim H T, Park J K. Solid State Ionics, 1997, 98:237.
[15] Kobayashi N, Uchiyama M, Tsuchida E. Solid State Ionics, 1985, 17:307.
[16] Ryu S W, Trapa P E, Olugebefola S C, Gonzalez-Leon J A, Sadoway D R, Mayes A M. J. Electrochem. Soc., 2005, 152:A158.
[17] Zhang S S, Deng Z H, Wan G X. Polymer Journal, 1991, 23:73.
[18] Sun X G, Hou J, Kerr J B. Electrochim. Acta, 2005, 50:1139.
[19] Benrabah D, Sylla S, Sanchez J Y, Armand M. J. Power Sources, 1995, 54: 456.
[20] Park C H, Sun Y K, Kim D W. Electrochim. Acta, 2004, 50:375.
[21] Xu W, Siow K S, Gao Z, Lee S Y. Chem. Mater., 1998, 10:1951.
[22] Watanabe M, Suzuki Y, Nishimoto A. Electrochimica Acta, 2000, 45:1187.
[23] Watanabe M, Tokuda H, Muto S. Electrochim. Acta, 2001, 46:1487.
[24] Geiculescu O E, Yang J, Zhou S, Shafer G, Xie Y, Albright J, Creager S E, Pennington W T, DesMarteau D D. J. Electrochem. Soc., 2004, 151:A1363.
[25] Feng S W, Shi D Y, Liu F, Zheng L P, Nie J, Feng W F, Huang X J, Armand M, Zhou Z B. Electrochim. Acta, 2013, 93:254.
[26] Allcock H R, Welna D T, Maher A E. Solid State Ionics, 2006, 177:741.
[27] Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Natrue Mater., 2013, 12:452.
[28] Xu W, Williams M D, Angell C A. Chem. Mater., 2002, 14:401.
[29] Sun X G, Reeder C L, Kerr J B. Macromolecules, 2004, 37:2219.
[30] Sun X G, Angell C A. Solid State Ionics, 2004, 175:743.
[31] Chen H M, Deng Z H, Zheng Y G, Xu W, Wan G X. J. Macromol. Sci. Part A, 1996, 33:1273.
[32] Benrabah D, Sylla S, Alloin F, Sanchez J Y, Armand M. Electrochim. Acta, 1995, 40:2259.
[33] Tokuda H, Muto S, Hoshi N, Minakata T, Ikeda M, Yamamoto F, Watanabe M. Macromolecules, 2002, 35:1403.
[34] Markusson H, Tokuda H, Watanabe M, Johansson P, Jacobsson P. Polymer, 2004, 45:9057.
[35] 袁余斌(Yuan Y B), 聂进(Nie J). 有机化学(Chinese J Org. Chem.), 2004, 24:857.
[36] Feiring E A, Choi S K, Doyle M, Wonchoba E R. Macromolecules, 2000, 33:9262.
[37] Meziane R, Bonnet J P, Courty M, Djellab K, Armand M. Electrochim. Acta, 2011, 57:14.
[38] Brandell D, Kasemägi H, Tamm T, Aabloo A. Solid State Ionics, 2013, DOI:10.1016/j.ssi.2013.09.039.
[39] Wang M K, Zhao F, Dong S J. J. Phys. Chem. B, 2004, 108:1365.
[40] Zhu Y S, Gao X W, Wang X J, Hou Y Y, Liu L L, Wu Y P. Electrochem. Commun., 2012, 22:29.
[41] Tsuchida E, Ohno H, Kobayashi N, Ishizaka H. Macromolecules, 1989, 22: 1771.
[42] Ito K, Ohno H. Solid State Ionics, 1995, 79:300.
[43] Tada Y, Sato M, Takeno N, Nakacho Y, Shigehara K. Chem. Mater., 1994, 6:27.
[44] Ito K, Nishina N, Ohno H. J. Mater. Chem., 1997, 7:1357.
[45] Ito K, Tominaga Y, Ohno H. Electrochim. Acta, 1997, 42:1561.
[46] Nakai Y, Ito K, Ohno H. Solid State Ionics, 1998, 113/115:199.
[47] Tominaga Y, Ohno H. Solid State Ionics, 1999, 124:323.
[48] Tominaga Y, Ohno H. Electrochim. Acta, 2000, 45:3081.
[49] Baum P, Meyer W H, Wegner G. Polymer, 2000, 41:965.
[50] Xu W, Angell C A. Solid State Ionics, 2002, 147:295.
[51] Hallac B B, Geiculescu O E, Rajagopal R V, Creager S E, DesMarteau D D. Electrochim. Acta, 2008, 53:5985.
[52] Herath M B, Creager S E, Rajagopal R V, Geiculescu O E, DesMarteau D D. Electrochim. Acta, 2009, 54:5877.
[53] Tsuchida E, Kobayashi N, Ohno H. Macromolecules, 1988 21:96.
[54] Kim H T, Park J K. Polymer Bulletin, 1996, 36:427.
[55] Zhang S S, Deng Z H, Wan G X. Chinese J. Polym. Sci., 1991, 9:326.
[56] Zhang S S, Deng Z H, Wan G X. J. Macromol. Sci. Part A, 1992, 29:77.
[57] Zhang S S, Wan G X. J. Appl. Polym. Sci., 1993, 48:405.
[58] Cowie J M G, Spence G H. Solid State Ionics, 1999, 123:233.
[59] Sadoway D R, Huang B Y, Trapa P E, Soo P P, Bannerjee P, Mayes A M. J. Power Sources, 2001, 97/98:621.
[60] Trapa P E, Acar M H, Sadoway D R, Mayes A M. J. Electrochem. Soc., 2005, 152:A2281.
[61] Sun X G, Kerr J B, Reeder C L, Liu G, Han Y B. Macromolecules, 2004, 37:5133.
[62] Sun X G, Kerr J B. Macromolecules, 2006, 39:362.
[63] 肖明艳(Xiao M Y), 陈建敏(Chen J M). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2001, 17:6.
[64] 范群英(Fan Q Y),詹红兵(Zhan H B). 化学进展(Progress in Chemistry), 2012, 24:54.
[65] 崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J),冯圣玉(Feng S Y). 化学进展(Progress in Chemistry), 2008, 20:1987.
[66] Huang X J, Chen L Q, Huang H, Xue R J, Ma Y Q, Fang S B, Li Y J, Jiang Y Y. Solid State Ionics, 1992, 51:69.
[67] Siska D P, Shriver D F. Chem. Mater., 2001, 13:4698.
[68] Snyder J F, Hutchison J C, Ratner M A, Shriver D F. Chem. Mater., 2003, 15:4223.
[69] Snyder J F, Ratner M A, Shriver D F. J. Electrochem. Soc., 2003, 150:A1090.
[70] Liang S W, Choi U H, Liu W J, Runt J, Colby R H. Chem. Mater., 2012, 24:2316.
[71] Doan K E, Ratner M A, Shriver D F. Chem. Mater., 1991, 3:418.
[72] Rawsky G C, Fujinami T, Shriver D F. Chem. Mater., 1994, 6:2208.
[73] Onishi K, Matsumoto M, Nakacho Y, Shigehara K. Chem. Mater., 1996, 8:469.
[74] Fujinami T, Tokimune A, Mehta M A. Chem. Mater., 1997, 9:2236.
[75] Fujinami T, Mehta M A, Sugie K, Mori K. Electrochim. Acta, 2000, 45:1181.
[76] Onishi K, Matsumoto M, Shigehara K. Chem. Mater., 1998, 10:927.
[77] Matsumi N, Sugai K, Ohno H. Macromolecules, 2002, 35:5731.
[78] Matsumi N, Sugai K, Ohno H. Macromolecules, 2003, 36:2321.
[79] Aoki T, Konno A, Fujinami T. J. Electrochem. Soc., 2004, 151:A887.
[80] Aoki T, Konno A, Fujinami T. Electrochim. Acta, 2004, 50:301.
[81] Nishihara Y, Miyazaki M, Tomita Y, Kadono Y, Takagi K. J. Polym. Sci. A, 2008, 46:7913.
[82] Mehta M A, Fujinami T. Chem. Lett., 1997, 26:915.
[83] Lee H S, Yang X Q, Xiang C L, McBreen J, Choi L S. J. Electrochem. Soc., 1998, 145:2813.
[84] McBreen J, Lee H S, Yang X Q, Sun X. J. Power Sources, 2000, 89:163.
[85] Hirakimoto T, Nishiura M, Watanabe M. Electrochim. Acta, 2001, 46:1609.
[86] Zhang S S, Angell C A. J. Electrochem. Soc., 1996, 143:4047.
[87] Strauss E, Golodnitsky D, Ardel G, Peled E. Electrochim. Acta, 1998, 43:1315.
[88] Mehta M A, Fujinami T. Solid State Ionics, 1998, 113/115:187.
[89] Mehta M A, Fujinami T, Inoue T. J. Power Sources, 1999, 81/82:724.
[90] Mehta M A, Fujinami T, Inoue S, Matsushita K, Miwa T, Inoue T. Electrochim. Acta, 2000, 45:1175.
[91] Kurono R, Mehta M A, Inoue T, Fujinami T. Electrochim. Acta, 2001, 47:483.
[92] Yang Y, Inoue T, Fujinami T, Mehta M A. Solid State Ionics, 2001, 140:353.
[93] 黄志镗(Huang Z T), 杨联明(Yang L L). 化学进展(Progress in Chemistry), 1994, 6:173.
[94] 郑炎松(Zheng Y S). 化学进展(Progress in Chemistry), 1999, 11:275.
[95] 吕鉴泉(Lü J Q), 陈朗星(Chen L X), 郭洪声(Guo H S), 何锡文(He X W). 化学进展(Progress in Chemistry), 2001, 13:209.
[96] Blazejczyk A, Wieczorek W, Kovarsky R, Golodnitsky D, Peled E, Scanlon L G, Appetecchi G B, Scrosati B. J Electrochem. Soc., 2004, 151:A1762.
[97] Blazejczyk A, Szczupak M, Wieczorek W, Cmoch P, Appetecchi G B, Scrosati B, Kovarsky R, Golodnitsky D, Peled E. Chem. Mater., 2005, 17:1535.
[98] Johansson P, Abrahamsson E, Jacobsson P. J. Molecular Structure: THEOCHEM, 2005, 717:215.
[99] Johansson P, Jacobsson P. Electrochimica Acta, 2005, 50:3782.
[100] Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S H, Rodríguez T, Greenbaum S G, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W. Electrochim. Acta, 2005, 50:3942.
[101] Plewa A, Chyliński F, Kalita M, Bukat M, Parzuchowski P, Borkowska R, Siekierski M, ukowska G Z, Wieczorek W. J. Power Sources, 2006, 159:431.
[102] Kalita H M, Plewa-Marczewska A, ukowska G Z, Sasim E, Wieczorek W, Siekierski M. Electrochim. Acta, 2010, 55:1298.
[103] Stephan A M, Kumar T P, Angulakshmi N, Salini P S, Sabarinathan R, Srinivasan A, Thomas S. J. Appl. Polym. Sci., 2011, 120:2215.
[104] Aravindan V, Gnanaraj J, Madhavi S, Liu H K. Chem. Eur. J., 2011, 17:14326.
[105] Han H B, Guo J, Zhang D J, Feng S W, Feng W F, Nie J, Zhou Z B. Electrochem. Commun., 2011, 13:265.
[106] Han H B, Zhou S S, Zhang D J, Feng S W, Li L F, Liu K, Feng W F, Nie J, Li H, Huang X J, Armand M, Zhou Z B. J. Power Sources, 2011, 196:3623.
[107] Chen Z H, Liu J, Amine K. Electrochem. Solid State Lett., 2007, 10:A45.

[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[3] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[4] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[5] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[6] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[7] Yadi Liu, Feng Liu, Cheng Wang, Bo Zhao, Jianlong Wang. Oxygen Evolution Catalyst of Solid Polymer Electrolysis [J]. Progress in Chemistry, 2018, 30(9): 1434-1444.
[8] Xinbing Cheng, Qiang Zhang*. Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites [J]. Progress in Chemistry, 2018, 30(1): 51-72.
[9] Gao Peng Han Jiajun Zhu Yongming Zhang Cuifen Li Ning. Surface Treatment on Lithium Electrode in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2009, 21(0708): 1678-1686.
[10] Zhao Feng,Qian Xinming,Wang Erkang,Dong Shaojun**. Advances in Ionic Conductive Polymer Electrolytes [J]. Progress in Chemistry, 2002, 14(05): 374-.