中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 961-975 DOI: 10.7536/PC131207 Previous Articles   Next Articles

• Review •

Iron-Based Inorganic Mesoporous Materials

Li Feihu*1,2, Nie Dongyang1   

  1. 1. School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Engineering Technology Center for Environmental Purification Materials Research, Jiangsu Key Lab of Atmospheric Environment Monitor and Pollution Control, Nanjing 210044, China;
    2. Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U. S. A.
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51002080, 51310105009), the China Scholorship Council(CSC) program(No.2011832032) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

PDF ( 1454 ) Cited
Export

EndNote

Ris

BibTeX

Iron-base inorganic mesoporous materials have attracted a lot of attentions recently due to their environmental-benignancy, cost-efficiency, and unique properties of magnetism and chemical activity, which allow them to find potential applications in different areas. In this paper, the recent progress in synthesis of iron-based inorganic mesoporous materials as well as their applications has been reviewed, with an emphasis on the synthetic routes and structural properties of various iron-based inorganic mesoporous materials (i.e., mesoporous iron oxyhydroxides, mesoporous iron oxides, mesoporous ferrosilicates, mesoporous iron phosphates, iron-based mesocrystals, mesoporous Fe/Si (C, Al, Ti) composites, etc.). In addition, their applications in catalysis, adsorption, gas-sensing, lithium-ion batteries, pharmacies, host-guest synthesis and other fields have been summarized and discussed. The current research problems of iron-based inorganic mesoporous materials and several future research directions have also been addressed.

Contents
1 Introduction
2 Synthesis of iron-based mesoporous materials
2.1 Mesoporous iron oxyhydroxides (MIHs)
2.2 Mesoporous iron oxides (MIOs)
2.3 Mesoporous ferrosilicates (MFSs)
2.4 Mesoporous iron phosphates (MIPs)
2.5 Iron-based mesocrytals (IMCs)
2.6 Mesoporous Fe/Si (C, Al, Ti) composites
2.7 Other iron-based mesoporous materials
3 Applications of iron-based mesoporous materials
3.1 Catalysis
3.2 Adsorption
3.3 Gas-sensing
3.4 Li-ion batteries
3.5 Pharmacies
3.6 Host-guest synthesis
3.7 Other applications
4 Summary

CLC Number: 

[1] Ying J Y, Mehnert C P, Wong M S. Angew. Chem. Int. Ed., 1999, 38: 56.
[2] Ciesla U, Schuth F. Micropor. Mesopor. Mat., 1999, 27: 131.
[3] Schuth F. Chem. Mat., 2001, 13: 3184.
[4] Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. 2nd ed. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. 3.
[5] Srivastava D N, Perkas N, Gedanken A, Felner I. J. Phys. Chem. B, 2002, 106: 1878.
[6] Malik A S, Duncan M J, Bruce P G. J. Mater. Chem., 2003, 13: 2123.
[7] Jiao F, Bruce P G. Angew. Chem. Int. Ed., 2004, 43: 5958.
[8] Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. J. Am. Chem. Soc., 2006, 128: 5468.
[9] Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. J. Am. Chem. Soc., 2006, 128: 12905.
[10] Ren Y, Ma Z, Bruce P G. Chem. Soc. Rev., 2012, 41: 4909.
[11] 张玉(Zhang Y), 张卫民(Zhang W M), 孙中溪(Sun Z X). 化学进展(Progress in Chemistry), 2007, 19: 1503.
[12] Hackley V A, Anderson M A. Journal of Membrane Science, 1992, 70: 41.
[13] Duraes L, Moutinho A, Seabra I J, Costa B F O, de Sousa H C, Portugal A. Mater. Chem. Phys., 2011, 130: 548.
[14] Li F H, Fu H, Zhai J P, Li Q. Micropor. Mesopor. Mat., 2009, 123: 177.
[15] Wu Z C, Zhang M, Yu K, Zhang S D, Xie Y. Chem. Eur. J., 2008, 14: 5346.
[16] Mathew T, Suzuki K, Nagai Y, Nonaka T, Ikuta Y, Takahashi N, Suzuki N, Shinjoh H. Chem. Eur. J., 2011, 17: 1092.
[17] Fuertes A B. J. Phys. Chem. Solids, 2005, 66: 741.
[18] Tuysuz H, Salabas E L, Weidenthaler C, Schuth F. J. Am. Chem. Soc., 2008, 130: 280.
[19] 董玉明(Dong Y M),蒋平平(Jiang P P),张爱民(Zhang A M).无机化学学报(Chinese Journal of Inorganic Chemistry)2009,25(9): 1595.
[20] Li Z Z, Zhang T, Li K. Dalton Trans., 2011, 40: 2062.
[21] Colomer M T, Zenzinger K. Micropor. Mesopor. Mat., 2012, 161: 123.
[22] Patra A K, Dutta A, Bhaumik A. ACS Applied Materials & Interfaces, 2012, 4: 5022.
[23] Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S. J. Energ. Mater., 2006, 24: 341.
[24] Liu Q, Zhang W M, Cui Z M, Zhang B, Wan L J, Song W G. Micropor. Mesopor. Mat., 2007, 100: 233.
[25] Izumi Y, Masih D, Aika K, Seida Y. Micropor. Mesopor. Mat., 2006, 94: 243.
[26] Ahmmad B, Leonard K, Islam M S, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y. Adv. Powder Technol., 2013, 24: 160.
[27] LaTempa T J, Feng X, Paulose M, Grimes C A. Journal of Physical Chemistry C, 2009, 113: 16293.
[28] Yuan Z Y, Liu S Q, Chen T H, Wang J Z, Li H X. J. Chem. Soc. Chem. Commun., 1995, 973.
[29] He N Y, Bao S L, Xu Q H. Studies in Surface Science and Catalysis, 1997, 105: 85.
[30] Echchahed B, Moen A, Nicholson D, Bonneviot L. Chem. Mat., 1997, 9: 1716.
[31] Tuel A, Arcon I, Millet J M M. J. Chem. Soc. Faraday Trans., 1998, 94: 3501.
[32] Yuan Z Y, Chen T H, Wang J Z, Li H X. Chin. Chem. Lett., 1996, 7: 1057.
[33] Kuang Y P, He N Y, Wang J, Xiao P F, Yuan C W, Lu Z H. Colloid Surf. A Physicochem. Eng. Asp., 2001, 179: 177.
[34] Xu J, Kevan L. Appl. Magn. Reson., 2001, 20: 3.
[35] Pasqua L, Testa F, Aiello R, di Renzo F, Fajula F. Micropor. Mesopor. Mat., 2001, 44: 111.
[36] 曹洁明(Cao J M), 董家禄(Dong J L), 须沁华(Xu Q H). 化学学报(Acta Chim. Sin.), 2000, 58: 75.
[37] Martinez F, Han Y J, Stucky G, Sotelo J L, Ovejero G, Melero J A. Studies in Surface Science and Catalysis, 2002, 142: 1109.
[38] Li Y, Guan Y J, van Santen R A, Kooyman P J, Dugulan I, Li C, Hensen E J M. J. Phys. Chem. C, 2009, 113: 21831.
[39] Bourlinos A B, Karakassides M A, Petridis D. J. Phys. Chem. B, 2000, 104: 4375.
[40] Yu D H, Qian J S, Xue N H, Zhang D Y, Wang C Y, Guo X F, Ding W P, Chen Y. Langmuir, 2007, 23: 382.
[41] Yu D H, Wu C, Kong Y, Xue N H, Guo X F, Ding W P. J. Phys. Chem. C, 2007, 111: 14394.
[42] Zhu S M, Zhou H S, Miyoshi T, Hibino M, Honma I, Ichihara M. Adv. Mater., 2004, 16: 2012.
[43] Santos-Pena J, Soudan P, Aren C, Palomino G, Franger S. J. Solid State Electrochem., 2006, 10: 1.
[44] Gerbaldi C, Meligrana G, Bodoardo S, Tuel A, Penazzi N. J. Power Sources, 2007, 174: 501.
[45] Shi Z C, Attia A, Ye W L, Wang Q, Li Y X, Yang Y. Electrochim. Acta, 2008, 53: 2665.
[46] Koleva V, Zhecheva E, Stoyanova R. J. Alloy. Compd., 2009, 476: 950.
[47] Saravanan K, Reddy M V, Balaya P, Gong H, Chowdari B V R, Vittal J J. J. Mater. Chem., 2009, 19: 605.
[48] Zhou W J, He W, Zhang X D, Sun X N, Han X X. Mater. Chem. Phys., 2009, 116: 319.
[49] Qian J F, Zhou M, Cao Y L. J. Phys. Chem. C, 2010, 114: 3477.
[50] Wang G X, Liu H, Liu J, Qiao S Z, Lu G Q M, Munroe P, Ahn H. Adv. Mater., 2010, 22: 4944.
[51] Zhang B, Wang X J, Liu Z J, Li H, Huang X J. J. Electrochem. Soc., 2010, 157: A285.
[52] Hill M R, Wilson G J, Bourgeois L, Pandolfo A G. Energy Environ. Sci., 2011, 4: 965.
[53] Lee Y J, Belcher A M. J. Mater. Chem., 2011, 21: 1033.
[54] Vu A, Stein A. Chem. Mat., 2011, 23: 3237.
[55] Xia Y, Zhang W K, Huang H, Gan Y P, Tian J, Tao X Y. J. Power Sources, 2011, 196: 5651.
[56] Zhang B, Wang X J, Li H, Huang X J. J. Power Sources, 2011, 196: 6992.
[57] Bai P, Bazant M Z. Nat. Commun., 2014, 5: 3585.
[58] Cai R, Du Y P, Zhang W Y, Zhang H, Yan Q Y.. Chem. Eur. J., 2013, 19: 1568.
[59] Chen L, Wu P, Xie K W, Li J P, Xu B, Cao G P, Chen Y, Tang Y W, Zhou Y M, Lu T H, Yang Y S. Electrochim. Acta, 2013, 92: 433.
[60] Wang F Q, Chen J, Wu M H, Yi B L. Ionics, 2013, 19: 451.
[61] Lin R H, Ding Y J. Materials, 2013, 6: 217.
[62] Guo X F, Ding W P, Wang X S, Yan Q J. Chem. Lett., 2000, 1368.
[63] Shi Z C, Li Y X, Ye W L, Yang Y. Electrochem. Solid State Lett., 2005, 8: A396.
[64] Luo X Z, Imae T. Chem. Lett., 2005, 34: 1132.
[65] Du Y C, Yang Y, Liu S, Xiao N, Zhang Y L, Xiao F S. Micropor. Mesopor. Mat., 2008, 114: 250.
[66] Guo X F, Ding W P, Wang X G, Yan Q J. Chem. Commun., 2001, 709.
[67] Zhu S M, Zhou H S, Hibino M, Honma I. Chem. Lett., 2004, 33: 774.
[68] Yuan Z Y, Su B L. Chem. Phys. Lett., 2003, 381: 710.
[69] Yuan Z Y, Ren T Z, Su B L. Catal. Today, 2004, 93/95: 743.
[70] Long J W, Logan M S, Rhodes C P, Carpenter E E, Stroud R M, Rolison D R. J. Am. Chem. Soc., 2004, 126: 16879.
[71] Zhou W, Lin L J, Wang W J, Zhang L L, Wu Q O, Li J H, Guo L. J. Phys. Chem. C, 2011, 115: 7126.
[72] Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M. Journal of Materials Chemistry, 2009, 19: 5125.
[73] Uchiyama H, Imai H. Crystal Growth & Design, 2010, 10: 1777.
[74] Zhu W C, Cui X L, Liu X F, Zhang L Y, Huang J Q, Piao X L, Zhang Q. Nanoscale Res. Lett., 2013, 8: 2.
[75] Cai J G, Chen S Y, Hu J, Wang Z, Ma Y R, Qi L M. CrystEngComm, 2013, 15: 6284.
[76] Ma J M, Teo J, Mei L, Zhong Z Y, Li Q H, Wang T H, Duan X C, Lian J B, Zheng W J. Journal of Materials Chemistry, 2012, 22: 11694.
[77] Disch S, Wetterskog E, Hermann R P, Salazar-Alvarez G, Busch P, Bruckel T, Bergstrom L, Kamali S. Nano Letters, 2011, 11: 1651.
[78] Yao Q Z, Guan Y B, Zhou G T. European Journal of Mineralogy, 2012, 24: 519.
[79] Decyk P, Trejda M, Ziolek M. C. R. Chim., 2005, 8: 635.
[80] 蓝国钧(Lan G J), 颜宇(Yan Y), 刘会君(Liu H J), 李瑛(Li Y). 化学通报(Chemistry), 2011, 74(1):32.
[81] Froba M, Kohn R, Bouffaud G, Richard O, van Tendeloo G. Chem. Mat., 1999, 11: 2858.
[82] Huwe H, Froba M. Micropor. Mesopor. Mat., 2003, 60: 151.
[83] Huwe H, Froba M. Carbon, 2007, 45: 304.
[84] Cannas C, Musu E, Musinu A, Piccaluga G, Spano G. J. Non-Cryst. Solids, 2004, 345: 653.
[85] Li F H. Micropor. Mesopor. Mat., 2013, 171: 139.
[86] Wang X X, Wang Y, Tang Q H, Guo Q A, Zhang Q H, Wan H L. J. Catal., 2003, 217: 457.
[87] Wang Y, Wang X X, Su Z, Guo Q, Tang Q H, Zhang Q H, Wan H L. Catal. Today, 2004, 93/95: 155.
[88] Hodgkins R P, Ahniyaz A, Parekh K, Belova L M, Bergstrom L. Langmuir, 2007, 23: 8838.
[89] Ursachi I, Vasile A, Ianculescu A, Vasile E, Stancu A. Mater. Chem. Phys., 2011, 130: 1251.
[90] Wang Y, Zhang Q H, Shishido T, Takehira K. J. Catal., 2002, 209: 186.
[91] Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q H, Wang Y, Takehira K. J. Mol. Catal. A Chem., 2005, 236: 99.
[92] Xu X D, Xu H L, Kapteijn F, Moulijn J A. Appl. Catal. B Environ., 2004, 53: 265.
[93] Holland B T, Walkup C, Stein A. J. Phys. Chem. B, 1998, 102: 4301.
[94] Li J S, Gu J, Li H J, Liang Y, Hao Y X, Sun X Y, Wang L J. Micropor. Mesopor. Mat., 2010, 128: 144.
[95] Wang R Q, Lin R H, Ding Y J, Liu J, Wang J H, Zhang T. Appl. Catal. A Gen., 2013, 453: 235.
[96] Dong X P, Chen H R, Zhao W R, Li X, Shi J L. Chem. Mat., 2007, 19: 3484.
[97] Wang X F, Liu P, Tian Y, Zang L Q. Micropor. Mesopor. Mat., 2011, 145: 98.
[98] Zhang L X, Hua Z L, Dong X P, Li L, Chen H R, Shi J L. J. Mol. Catal. A Chem., 2007, 268: 155.
[99] Trejda M, Kujawa J, Ziolek M. Catal. Lett., 2006, 108: 141.
[100] Katok K V, Tertykh V A, Brichka S Y, Prikhod'ko G P. Mater. Chem. Phys., 2006, 96: 396.
[101] Schneider J J, Czap N, Hagen J, Engstler J, Ensling J, Gutlich P, Reinoehl U, Bertagnolli H, Luis F, de Jongh L J, Wark M, Grubert G, Hornyak G L, Zanoni R. Chem. Eur. J., 2000, 6: 4305.
[102] Fan H J, Xu Q, Guo Y Q, Cao Y X. Ind. Eng. Chem. Res., 2006, 45: 5009.
[103] Bandyopadhyay P, Sathe M, Prasad G K, Sharma P, Kaushik M P. J. Mol. Catal. A Chem., 2011, 341: 77.
[104] Zhang Y H, Reller A. J. Mater. Chem., 2001, 11: 2537.
[105] Perkas N, Palchik O, Brukental I, Nowik I, Gofer Y, Koltypin Y, Gedanken A. J. Phys. Chem. B, 2003, 107: 8772.
[106] Zhou M H, Yu J G, Cheng B. J. Hazard. Mater., 2006, 137: 1838.
[107] Ma W F, Zhang Y, Li L L, You L J, Zhang P, Zhang Y T, Li J M, Yu M, Guo J, Lu H J, Wang C C. ACS Nano, 2012, 6: 3179.
[108] Patra A K, Dutta A, Bhaumik A. Chem. Eur. J., 2013, 19: 12388.
[109] Li C L, Gu L, Tong J W, Tsukimoto S, Maier J. Adv. Funct. Mater., 2011, 21: 1391.
[110] Lu Y, Wen Z Y, Rui K, Wu X W, Cui Y M. J. Power Sources, 2013, 244: 306.
[111] Gbel R, Xie Z L, Neumann M, Gunter C, Lobbicke R, Kubo S, Titirici M M, Giordano C, Taubert A. CrystEngComm, 2012, 14: 4946.
[112] Kraupner A, Antonietti M, Palkovits R, Schlicht K, Giordano C. J. Mater. Chem., 2010, 20: 6019.
[113] Das S K, Nandi M, Giri S, Bhaumik A. Micropor. Mesopor. Mat., 2009, 117: 362.
[114] Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D, Zhang Y. J. Mater. Chem., 2010, 20: 945.
[115] Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S, Kleitz F. Chem. Commun., 2011, 47: 10473.
[116] Tuysuz H, Salabas E L, Bill E, Bongard H, Spliethoff B, Lehmann C W, Schuth F. Chem. Mat., 2012, 24: 2493.
[117] Amini E, Rezaei M, Sadeghinia M. Chin. J. Catal., 2013, 34: 1762.
[118] Li B, Li M, Yao C H, Shi Y F, Ye D R, Wu J, Zhao D Y. Journal of Materials Chemistry A, 2013, 1: 6742.
[119] Lv L L, Xu Q, Ding R, Qi L, Wang H Y. Mater. Lett., 2013, 111: 35.
[120] Wang Y, Zhao H, Li M, Fan J, Zhao G. Applied Catalysis B: Environmental, 2014, 147: 534.
[121] Zhang Y, Liu Y, Li M Z, Lu S Z, Wang J N. Ceram. Int., 2013, 39: 6591.
[122] Schuth F, Wingen A, Sauer J. Micropor. Mesopor. Mat., 2001, 44: 465.
[123] Pereira M C, Oliveira L C A, Murad E. Clay Min., 2012, 47: 285.
[124] Liu C B, Ye X K, Wu Y. Catal. Lett., 1996, 36: 263.
[125] Schuth F. Annual Review of Materials Research, 2005, 35: 209.
[126] Yue W B, Zhou W Z. Prog. Nat. Sci., 2008, 18: 1329.
[127] Cao J M, He N Y, Li C, Dong J L, Xu Q H. Studies in Surface Science and Catalysis, 1998, 117: 461.
[128] Bachari K, Millet J M M, Benaichouba B, Cherifi O, Figueras F. J. Catal., 2004, 221: 55.
[129] Crowther N, Larachi F. Appl. Catal. B Environ., 2003, 46: 293.
[130] He N Y, Bao S L, Xu Q H. Appl. Catal. A Gen., 1998, 169: 29.
[131] Thitsartarn W, Gulari E, Wongkasemjit S. Appl. Organomet. Chem., 2008, 22: 97.
[132] Choi J S, Yoon S S, Jang S H, Ahn W S. Catal. Today, 2006, 111: 280.
[133] Zhao W, Luo Y F, Deng P, Li Q Z. Catal. Lett., 2001, 73: 199.
[134] Gokulakrishnan N, Pandurangan A, Sinha P K. J. Chem. Technol. Biotechnol., 2007, 82: 25.
[135] Vinu A, Krithiga T, Balasubramanian V V, Asthana A, Srinivasu P, Mori T, Ariga K, Ramanath G, Ganesan P G. J. Phys. Chem. B, 2006, 110: 11924.
[136] Anand C, Srinivasu P, Alam S, Balasubramanian V V, Sawant D P, Palanichamy M, Murugesan V, Vinu A. Micropor. Mesopor. Mat., 2008, 111: 72.
[137] Liu S, Du Y C, Xiao N, Zhang Y L, Ji Y Y, Xiao F S. Chin. J. Catal., 2008, 29: 468.
[138] Calleja G, Melero J A, Martinez F, Molina R. Water Res., 2005, 39: 1741.
[139] Xin H C, Liu J, Fan F T, Feng Z C, Jia G Q, Yang Q H, Li C. Micropor. Mesopor. Mat., 2008, 113: 231.
[140] Reyes-Carmona A, Soriano M D, Nieto J M L, Jones D J, Jimenez-Jimenez J, Jimenez-Lopez A, Rodriguez-Castellon E. Catal. Today, 2013, 210: 117.
[141] Anand C, Priya S V, Lawrence G, Dhawale D S, Varghese S, Wahab M A, Prasad K S, Vinu A. Catal. Today, 2013, 204: 125.
[142] Sirotin S V, Moskovskaya I F, Romanovsky B V. Catal. Sci. Technol., 2011, 1: 971.
[143] Elias V, Vaschetto E, Sapag K, Oliva M, Casuscelli S, Eimer G. Catal. Today, 2011, 172: 58.
[144] Martinez F, Calleja G, Melero J A, Molina R. Appl. Catal. B Environ., 2005, 60: 181.
[145] Du Y C, Liu S, Ji Y Y, Zhang Y L, Liu F J, Gao Q, Xiao F S. Catal. Today, 2008, 131: 70.
[146] Botas J A, Melero J A, Martinez F, Pariente M I. Catal. Today, 2010, 149: 334.
[147] Melero J A, Calleja G, Martinez F, Molina R. Catal. Commun., 2006, 7: 478.
[148] Molina R, Martinez F, Melero J A, Bremner D H, Chakinala A G. Appl. Catal. B Environ., 2006, 66: 198.
[149] Martinez F, Calleja G, Melero J A, Molina R. Appl. Catal. B Environ., 2007, 70: 452.
[150] Szegedi A, Popova M, Lazar K, Klebert S, Drotar E. Micropor. Mesopor. Mat., 2013, 177: 97.
[151] Nozaki C, Lugmair C G, Bell A T, Tilley T D. J. Am. Chem. Soc., 2002, 124: 13194.
[152] Perkas N, Wang Y Q, Koltypin Y, Gedanken A, Chandrasekaran S. Chem. Commun., 2001, 988.
[153] Parida K M, Pradhan G K. Mater. Chem. Phys., 2010, 123: 427.
[154] Kim T W, Ha H W, Paek M J, Hyun S H, Baek I H, Choy J H, Hwang S J. J. Phys. Chem. C, 2008, 112: 14853.
[155] Mahmoud M H H, Ismail A A, Sanad M M S. Chem. Eng. J., 2012, 187: 96.
[156] Parida K M, Sahu N, Mohapatra P, Scurrell M S. J. Mol. Catal. A Chem., 2010, 319: 92.
[157] Pillai U R, Sahle-Demessie E. Chem. Commun., 2004, 826.
[158] Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Catal. Lett., 2009, 131: 146.
[159] Liu Q, Cui Z M, Ma Z, Bian S W, Song W G, Wan L J. Nanotechnology, 2007, 18: 385605.
[160] Goncalves R H, Lima B H R, Leite E R. J. Am. Chem. Soc., 2011, 133: 6012.
[161] Xu J S, Zhu Y J. CrystEngComm, 2012, 14: 2702.
[162] Yokoi T, Tatsumi T, Yoshitake H. Studies in Surface Science and Catalysis, 2003, 146: 531.
[163] Gu Z M, Deng B L, Yang J. Micropor. Mesopor. Mat., 2007, 102: 265.
[164] Zhou W, Fu H G, Pan K, Tian C G, Qu Y, Lu P P, Sun C C. J. Phys. Chem. C, 2008, 112: 19584.
[165] Sun X F, Hu C, Qu J H. Desalin. Water Treat., 2009, 8: 139.
[166] Asuha S, Zhao Y M, Zhao S, Deligeer W. Solid State Sci., 2012, 14: 833.
[167] De Sousa A F, Braga T P, Gomes E C C, Valentini A, Longhinotti E. Chem. Eng. J., 2012, 210: 143.
[168] Kim J H, Kim J H, Bokare V, Kim E J, Chang Y Y, Chang Y S. J. Nanopart. Res., 2012, 14: 1010.
[169] Zuo J C, Tong S R, Yu X L, Wu L Y, Cao C Y, Ge M F, Song W G. J. Hazard. Mater., 2012, 235: 336.
[170] Li G L, Lan J, Liu J Y, Jiang G B. J. Colloid Interface Sci., 2013, 405: 164.
[171] Li F H, Fu X R, Huang J, Zhai J P. Chem. Res. Chin. Univ., 2012, 28: 559.
[172] Seredych M, Bandosz T J. Langmuir, 2007, 23: 6033.
[173] Guo L M, Cui X Z, Li Y S, He Q J, Zhang L X, Bu W B, Shi J L. Chem. Asian J., 2009, 4: 1480.
[174] 邢伟(Xing W), 禚淑萍(Zhuo S P), 司维江(Si W J), 袁勋(Yuan X). 化学学报(Acta Chim. Sin.), 2009, 67: 761.
[175] Zhu Y F, Kockrick E, Kaskel S, Ikoma T, Hanagata N. J. Phys. Chem. C, 2009, 113: 5998.
[176] Asuha S, Gao Y W, Deligeer W, Yu M, Suyala B, Zhao S. J. Porous Mat., 2011, 18: 581.
[177] Vilarrasa-Garcia E, Azevedo D C S, Braos-Garcia P, Infantes-Molina A, Cavalcante C L, Jimenez-Jimenez J, Jimenez-Lopez A, Rodriguez-Castellon E. Adsorpt. Sci. Technol., 2011, 29: 691.
[178] Lim S H, Woo E J, Lee H, Lee C H. Appl. Catal. B-Environ., 2008, 85: 71.
[179] Zhou Y, Yang J, Yang J Y, Gu F N, Wang Y, Zhu J H. J. Mater. Chem., 2011, 21: 13895.
[180] Chen X Q, Lam K F, Zhang Q J, Pan B C, Arruebo M, Yeung K L. J. Phys. Chem. C, 2009, 113: 9804.
[181] Chen B, Zhu Z L, Guo Y W, Qiu Y L, Zhao J F. J. Colloid Interf. Sci., 2013, 398: 142.
[182] Wu Z C, Yu K, Zhang S D, Xie Y. J. Phys. Chem. C, 2008, 112: 11307.
[183] Chen H M, Zhao Y Q, Yang M Q, He J H, Chu P K, Zhang J, Wu S H. Anal. Chim. Acta, 2010, 659: 266.
[184] Hao Q Y, Liu S A, Yin X M, Wang Y G, Li Q H, Wang T H. Solid State Sci., 2010, 12: 2125.
[185] Sun B, Horvat J, Kim H S, Kim W S, Ahn J, Wang G X. J. Phys. Chem. C, 2010, 114: 18753.
[186] Hao Q Y, Liu S A, Yin X M, Du Z F, Zhang M, Li L M, Wang Y G, Wang T H, Li Q H. CrystEngComm, 2011, 13: 806.
[187] Mao D, Yao J X, Lai X Y, Yang M, Du J A, Wang D. Small, 2011, 7: 578.
[188] Yuan Q, Li N, Geng W C, Chi Y, Tu J C, Li X T, Shao C L. Sens. Actuator B Chem., 2011, 160: 334.
[189] Wang Y, Cao J L, Yu M G, Sun G, Wang X D, Bala H, Zhang Z Y. Mater. Lett., 2013, 100: 102.
[190] Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein A, Tolbert S H, Perlich J, Dunn B, Brezesinski T. Small, 2011, 7: 407.
[191] Kang E, Jung Y S, Cavanagh A S, Kim G H, George S M, Dillon A C, Kim J K, Lee J. Adv. Funct. Mater., 2011, 21: 2430.
[192] Yoon T, Chae C, Sun Y K, Zhao X, Kung H H, Lee J K. J. Mater. Chem., 2011, 21: 17325.
[193] Xiao Z, Xia Y, Ren Z H, Liu Z Y, Xu G, Chao C Y, Li X, Shen G, Han G R. J. Mater. Chem., 2012, 22: 20566.
[194] Xu J S, Zhu Y J. ACS Applied Materials & Interfaces, 2012, 4: 4752.
[195] 徐科(Xu K),申来法(Shen L F),米常焕(Mi C H),张校刚(Zhang X G). 物理化学学报(Acta Phys. Chim. Sin.),2012, 28(1), 105.
[196] Yuan S M, Li J X, Yang L T, Su L W, Liu L, Zhou Z. ACS Applied Materials & Interfaces, 2011, 3: 705.
[197] 王炎(Wang Y),郑旭翰(Zheng X H),姜兆华(Jiang Z H). 化 学 进 展(Progress in Chemistry)2006,18(10):1345.
[198] Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Chem. Mat., 2007, 19: 3455.
[199] Zhu S M, Zhou Z Y, Zhang D. ChemPhysChem, 2007, 8: 2478.
[200] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623.
[201] Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B. Adv. Funct. Mater., 2011, 21: 1850.
[202] Yang P P, Quan Z W, Hou Z Y, Li C X, Kang X J, Cheng Z Y, Lin J. Biomaterials, 2009, 30: 4786.
[203] Liu Q, Zhang J X, Xia W L, Gu H C. Journal of Nanoscience and Nanotechnology, 2012, 12: 7709.
[204] Lu B Q, Zhu Y J, Ao H Y, Qi C, Chen F. ACS Applied Materials & Interfaces, 2012, 4: 6968.
[205] Zhang F, Braun G B, Pallaoro A, Zhang Y C, Shi Y F, Cui D X, Moskovits M, Zhao D Y, Stucky G D. Nano Letters, 2012, 12: 61.
[206] Zhang X F, Mansouri S, Clime L, Ly H Q, Yahia L H, Veres T. J. Mater. Chem., 2012, 22: 14450.
[207] Zhao C X, Yu L, Middelberg A P J. Journal of Materials Chemistry B, 2013, 1: 4828.
[208] Knezevic N Z, Slowing I I, Lin V S Y. ChemPlusChem, 2012, 77: 48.
[209] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2010, 132: 552.
[210] Xuan S H, Wang F, Lai J M Y, Sham K W Y, Wang Y X J, Lee S F, Yu J C, Cheng C H K, Leung K C F. ACS Applied Materials & Interfaces, 2011, 3: 237.
[211] Guo S J, Li D, Zhang L M, Li J, Wang E K. Biomaterials, 2009, 30: 1881.
[212] Li W Z, Xie S S, Qian L X, Chang B H, Zou B S, Zhou W Y, Zhao R A, Wang G. Science, 1996, 274: 1701.
[213] Ko J R, Ahn W S. Journal of Nanoscience and Nanotechnology, 2006, 6: 3442.
[214] Lo A Y, Yu N Y, Huang S J, Hung C T, Liu S H, Lei Z B, Kuo C T, Liu S B. Diam. Relat. Mat., 2011, 20: 343.
[215] Carta D, Casula M F, Corrias A, Falqui A, Dombovari A, Galos A, Konya Z. Journal of Nanoscience and Nanotechnology, 2011, 11: 6735.
[216] Kohno Y, Senga M, Shibata M, Yoda K, Matsushima R, Tomita Y, Maeda Y, Kobayashi K. Micropor. Mesopor. Mat., 2011, 141: 77.
[217] Chaikriangkrai A, Takeshita Y, Shibata M. Chem. Lett., 2011, 40: 693.
[218] Aboufazeli F, Zhad H R L Z, Sadeghi O, Karimi M, Najafi E. Food Chemistry, 2013, 141: 3459.
[219] Wu J W, Su P, Huang J, Wang S M, Yang Y. J. Colloid Interf. Sci., 2013, 399: 107.
[220] Duret A, Gratzel M. J. Phys. Chem. B, 2005, 109: 17184.
[221] Cummings C Y, Marken F, Peter L M, Wijayantha K G U, Tahir A A. J. Am. Chem. Soc., 2012, 134: 1228.
[222] Brillet J, Gratzel M, Sivula K. Nano Letters, 2010, 10: 4155.
[223] Barroso M, Mesa C A, Pendlebury S R, Cowan A J, Hisatomi T, Sivula K, Gratzel M, Klug D R, Durrant J R. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 15640.
[224] Boudjemaa A, Bachari K, Trari M. Materials Science in Semiconductor Processing, 2013, 16: 838.
[225] Lin Y, Zhou S, Sheehan S W, Wang D. J. Am. Chem. Soc., 2011, 133: 2398.

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[4] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[5] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[6] Ning Liu, Shuilin Liu, Suyun Wu, Lin Fu, Zhi Wu, Laibing Li. Preparation and Application of Matal-Based Mesoporous Solid Bases [J]. Progress in Chemistry, 2020, 32(5): 536-547.
[7] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[8] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[9] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[10] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[11] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[12] Zhang Lingfeng, Hu Zhongpan, Gao Zemin, Liu Yalu, Yuan Zhongyong. Preparation and Catalytic Application of Ordered Mesoporous Carbon-Based Metal Composite Materials [J]. Progress in Chemistry, 2015, 27(8): 1042-1056.
[13] Zhang Xiaodong, Dong Han, Wang Yin, Cui Lifeng. Host-Guest Assembly and Application of Ordered Mesoporous Silica Materials [J]. Progress in Chemistry, 2015, 27(10): 1374-1383.
[14] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[15] Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong. Syntheses and Applications of Hybrid Mesoporous Silica Membranes [J]. Progress in Chemistry, 2014, 26(08): 1352-1360.
Viewed
Full text


Abstract

Iron-Based Inorganic Mesoporous Materials