中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 939-949 DOI: 10.7536/PC131160 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries

Deng Haifu, Nie Ping, Shen Laifa, Luo Haifeng, Zhang Xiaogang*   

  1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (973 Program, No. 2014CB239701), the National Natural Science Foundation of China (No. 21173120, 51372116), the Natural Science Foundation of Jiangsu Province, China (No.BK2011030) and the Fundamental Research Funds for the Central Universities (No.NP2014403)

PDF ( 2195 ) Cited
Export

EndNote

Ris

BibTeX

Lithium ion batteries (LIBs) have been considered as promising energy storage devices in the past decades owing to their high operating voltage, large energy density and outstanding cycle performance. However, the currently commercial LIBs could not fulfill the demand of electric vehicles(EV) or hybrid electric vehicles(HEV) applications. Thence, superior electrode materials possessing either higher capacity or higher voltage have gained enormous interest. Taking this into account, spinel LiNi0.5Mn1.5O4 which owns high operating voltage, relatively high theoretical capacity (147 mAh ·g-1) and three-dimensional lithium ion transport channels has become one of the most excellent cathode materials. In the presented paper, the structure and synthesis of this material are reviewed, and special emphases are shown to the current research activities on LiNi0.5Mn1.5O4 cathodes in ion doping along with surface coating synthesized by various synthetic techniques. Finally, the key issues and prospects of the cathode material are commented.

Contents
1 Introduction
2 Structure of LiNi0.5Mn1.5O4 cathode material
3 Synthesis of LiNi0.5Mn1.5O4 cathode material
4 Problems of LiNi0.5Mn1.5O4 cathode material
5 Modification of LiNi0.5Mn1.5O4 cathode material
5.1 Ion doping
5.2 Surface modification
5.3 Other methods
6 Conclusions and outlook

CLC Number: 

[1] Meng X, Yang X, Sun X. Adv. Mater., 2012, 24: 3589.
[2] Choi N, Chen Z, Freunberger S A, Ji X, Sun Y, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Angew. Chem. Int. Ed., 2012, 51: 9994.
[3] Dathar G K P, Sheppard D, Stevenson K J, Henkelman G. Chem. Mater., 2011, 23: 4032.
[4] Yang J, Tse J S. J. Mater. Chem. A, 2011, 115: 13045.
[5] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J. Nat. Mater., 2011, 11: 19.
[6] Aravindan V, Sundaramurthy J, Kumar P S, Shubha N, Ling W C, Ramakrishna S, Madhavi S. Nanoscale, 2013, 5: 10636.
[7] Mohanty D, Sefat A S, Li J L, Meisner R A, Rondinone A J, Payzant E A, Abraham D P, Wood D L Ⅲ, Daniel C. Phys. Chem. Chem. Phys., 2013, 15: 19496.
[8] Lee H, Muralidharan P, Ruffo R, Mari C M, Cui Y, Kim D K. Nano Lett., 2010, 10: 3852.
[9] Waals K A, Johnson C S, Genthe J, Stoiber L C, Zeltner W A, Anderson M A, Thackeray M M. J. Power Sources, 2010, 195: 4943.
[10] Talik E, Lipinska L, Zajdel P, Zal O G A, Michalska M, Guzik A. J. Solid State Chem. Fran., 2013, 206: 257.
[11] Jayapal S, Mariappan R, Piraman S. J. Solid State Electrochem., 2013, 10: 1.
[12] Wang C, Lu S, Kan S, Pang J, Jin W, Zhang X. J. Power Sources, 2009, 189: 607.
[13] Chemelewski K R, Shin D W, Li W, Manthiram A. J. Mater. Chem. A, 2013, 1: 3347.
[14] Lee E, Nam K, Hu E, Manthiram A. Chem. Mater., 2012, 24: 3610.
[15] Zhang X, Cheng F, Zhang K, Liang Y, Yang S, Liang J, Chen J. RSC Adv., 2012, 2: 5669.
[16] Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien C M, Goodenough J B. RSC Adv., 2014, 4: 154.
[17] Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Yang X, Liu J, Graff G L. Phys. Chem. Chem. Phys., 2012, 14: 13515.
[18] Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Chem. Mater., 2004, 16: 906.
[19] Cho H, Meng Y S. J. Electrochem. Soc., 2013, 160: A1482.
[20] Amdouni N, Zaghib K, Gendron F, Mauger A, Julien C M. Ionics, 2006, 12: 117.
[21] Chen Z, Zhu H, Ji S, Linkov V, Zhang J, Zhu W. J. Power Sources, 2009, 189: 507.
[22] Zhu Z, Yan H, Zhang D, Li W, Lu Q. J. Power Sources, 2013, 224: 13.
[23] Xiao L, Zhao Y, Yang Y, Ai X, Yang H, Cao Y. J. Solid State Electrochem., 2008, 12: 687.
[24] Sun Y, Yang Y, Zhao X, Shao H. Electrochim. Acta, 2011, 56: 5934.
[25] Chang Z, Dai D, Tang H, Yu X, Yuan X, Wang H. Electrochim. Acta, 2010, 55: 5506.
[26] Zhao Q, Ye N, Li L, Yan F. Rare Metal Mater. Eng., 2010, 39: 1715.
[27] Zhu Z, Zhang D, Yan H, Li W. J. Mater. Chem. A, 2013, 1: 5492.
[28] Qian Y, Deng Y, Shi Z, Zhou Y, Zhuang Q, Chen G. Electrochem. Commun., 2013, 27: 92.
[29] Dong Y, Wang Z, Qin H, Sui X. RSC Adv., 2012, 2: 11988.
[30] Kim J H, Myung S T, Sun Y K. Electrochim. Acta, 2004, 49: 219.
[31] Hao X, Austin M H, Bartlett B M. Dalton Trans., 2012, 41: 8067.
[32] Liu J, Liu W, Ji S, Zhou Y, Hodgson P, Li Y. ChemPlusChem, 2013, 78: 636.
[33] Choi S H, Hong Y J, Kang Y C. Nanoscale, 2013, 5: 7867.
[34] Zhang X, Cheng F, Yang J, Chen J. Nano Lett., 2013, 13: 2822.
[35] Zhou L, Zhao D, Lou X D. Angew. Chem. Int. Ed., 2012, 124: 243.
[36] Duncan H, Duguay D, Abu-Lebdeh Y, Davidson I J. J. Electrochem. Soc., 2011, 158: A537.
[37] Alcántara R, Jaraba M, Lavela P, Tirado J L, Biensan P, de Guibert A, Jordy C, Peres J P. Chem. Mater., 2003, 15: 2376.
[38] Kim J, Myung S, Yoon C S, Oh I, Sun Y. J. Electrochem. Soc., 2004, 151: A1911.
[39] Alcántara R, Jaraba M, Lavela P, Tirado J L, Zhecheva E, Stoyanova R. Chem. Mater., 2004, 16: 1573.
[40] Liu G, Zhang L, Sun L, Wang L. Mater. Res. Bull., 2013, 48: 4960.
[41] Alcantara R, Jaraba M, Lavela P, Lloris J M, Vicente C P E R, Tirado J L. J. Electrochem. Soc., 2005, 152: A13.
[42] Liu J, Manthiram A. J. Phys. Chem. C, 2009, 113: 15073.
[43] Arunkumar T A, Manthiram A. Electrochem. Solid-State Lett., 2005, 8: A403.
[44] Yang M, Xu B, Cheng J, Pan C, Hwang B, Meng Y S. Chem. Mater., 2011, 23: 2832.
[45] Chemelewski K R, Manthiram A. J. Phys. Chem. C, 2013, 117: 12465.
[46] Alcantara R, Jaraba M, Lavela P, Tirado J L. J. Electrochem. Soc., 2004, 151: A53.
[47] Park S B, Eom W S, Cho W I, Jang H. J. Power Sources, 2006, 159: 679.
[48] Liu D, Hamel-Paquet J, Trottier J, Barray F, Gariépy V, Hovington P, Guerfi A, Mauger A, Julien C M, Goodenough J B, Zaghib K. J. Power Sources, 2012, 217: 400.
[49] Zhong G B, Wang Y Y, Zhang Z C, Chen C H. Electrochim. Acta, 2011, 56: 6554.
[50] Wang H, Xia H, Lai M O, Lu L. Electrochem. Commun., 2009, 11: 1539.
[51] Wang H, Tan T A, Yang P, Lai M O, Lu L. J. Phys. Chem. C, 2011, 115: 6102.
[52] Shin D W, Manthiram A. Electrochem. Commun., 2011, 13: 1213.
[53] Prabakar S J R, Han S C, Singh S P, Lee D K, Sohn K, Pyo M. J. Power Sources, 2012, 209: 57.
[54] Yi T, Ying X, Zhu Y, Zhu R, Ye M. J. Power Sources, 2012, 211: 59.
[55] Yi T, Chen B, Zhu Y, Li X, Zhu R. J. Power Sources, 2014, 247: 778.
[56] Wu P, Zeng X L, Zhou C, Gu G F, Tong D G. Mater. Chem. Phys., 2013, 138: 716.
[57] Oh S, Park S, Kim J, Bae Y C, Sun Y. J. Power Sources, 2006, 157: 464.
[58] Stroukoff K R, Manthiram A. J. Mater. Chem., 2011, 21: 10165.
[59] Sun Y, Sung W O, Yoon C S, Hyun J B, Prakash J. J. Power Sources, 2006, 161: 19.
[60] Shin D W, Bridges C A, Huq A, Paranthaman M P, Manthiram A. Chem. Mater., 2012, 24: 3720.
[61] Lee E, Manthiram A. J. Mater. Chem. A, 2013, 1: 3118.
[62] Sha O, Tang Z, Wang S, Yuan W, Qiao Z, Xu Q, Ma L. Electrochim. Acta, 2012, 77: 250.
[63] Le O N B, Lloris J E M, Vicente C P E R, Tirado J E L. Electrochem. Solid-State Lett., 2006, 9: A96.
[64] Sun Y, Hong K, Prakash J, Amine K. Electrochem. Commun., 2002, 4: 344.
[65] Fan Y, Wang J, Tang Z, He W, Zhang J. Electrochim. Acta, 2007, 52: 3870.
[66] Noguchi T, Yamazaki I, Numata T, Shirakata M. J. Power Sources, 2007, 174: 359.
[67] Wu H M, Belharouak I, Abouimrane A, Sun Y K, Amine K. J. Power Sources, 2010, 195: 2909.
[68] Liu J, Manthiram A. Chem. Mater., 2009, 21: 1695.
[69] Baggetto L I C, Unocic R R, Dudney N J, Veith G M. J. Power Sources, 2012, 211: 108.
[70] Kang H, Myung S, Amine K, Lee S, Sun Y. J. Power Sources, 2010, 195: 2023.
[71] Shi J Y, Yi C, Kim K. J. Power Sources, 2010, 195: 6860.
[72] Liu D, Bai Y, Zhao S, Zhang W. J. Power Sources, 2012, 219: 333.
[73] Li J, Zhang Y, Li J, Wang L, He X, Gao J. Ionics, 2011, 17: 671.
[74] Huang Y Y, Zeng X L, Zhou C, Wu P, Tong D G. J. Mater. Sci., 2013, 48: 625.
[75] Arrebola J, Caballero A, Hernan L, Morales J. Electrochem. Solid-State Lett., 2005, 8: A303.
[76] Arrebola J, Caballero A, Hernan L, Morales J, Castell O N E R I G, Barrado J R. J. Electrochem. Soc., 2007, 154: A178.
[77] Shen L, Li H, Uchaker E, Zhang X, Cao G. Nano Lett., 2012, 12: 5673.
[78] Yang T, Zhang N, Lang Y, Sun K. Electrochim. Acta, 2011, 56: 4058.
[79] Fang X, Ge M, Rong J, Zhou C. J. Mater. Chem. A, 2013, 1: 4083.
[80] Prabakar S R, Hwang Y, Lee B, Sohn K, Pyo M. J. Electrochem. Soc., 2013, 160: A832.
[81] Zhao G, Lin Y, Zhou T, Lin Y, Huang Y, Huang Z. J. Power Sources, 2012, 215: 63.
[82] Cho J, Park J, Lee M, Song H, Lee S. Energy Environ. Sci., 2012, 5: 7124.
[83] Li J, Baggetto L I C, Martha S K, Veith G M, Nanda J, Liang C, Dudney N J. Adv. Eng. Mater., 2013, 3: 1275.
[84] Chong J, Xun S, Song X, Liu G, Battaglia V S. Nano Eng., 2013, 2: 283.
[85] Cheng F, Xin Y, Huang Y, Chen J, Zhou H, Zhang X. J. Power Sources, 2013, 239: 181.
[86] Gong Y, Palacio D, Song X, Patel R L, Liang X, Zhao X, Goodenough J B, Huang K. Nano Lett., 2013, 13: 4340.
[87] Jung Y S, Cavanagh A S, Gedvilas L, Widjonarko N E, Scott I D, Lee S, Kim G, George S M, Dillon A C. Adv. Eng. Mater., 2012, 2: 1022.
[88] Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien C M, Zaghib K. J. Power Sources, 2012, 204: 127.
[89] Hagh N M, Cosandey F, Rangan S, Bartynski R, Amatucci G G. J. Electrochem. Soc., 2010, 157: A305.
[90] Park J S, Roh K C, Lee J, Song K, Kim Y, Kang Y. J. Power Sources, 2013, 230: 138.
[91] Saruwatari H, Ishikawa T, Korechika Y, Kitamura N, Takami N, Idemoto Y. J. Power Sources, 2011, 196: 10126.
[92] Jung H, Jang M W, Hassoun J, Sun Y, Scrosati B. Nat. Commun., 2011, 2: 516.
[93] Hassoun J, Lee K, Sun Y, Scrosati B. J. Am. Chem. Soc., 2011, 133: 3139.
[94] Wu F, Zhu Q, Li L, Chen R, Chen S. J. Mater. Chem. A, 2011, 1: 3659.
[95] Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energy Environ. Sci., 2013, 6: 1806.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[7] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[8] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[11] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[12] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[13] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[14] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[15] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.