中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 1065-1078 DOI: 10.7536/PC131155 Previous Articles   Next Articles

• Review •

Fluorescent Probes for Hydrogen Sulfide Detection

Gao Min1,2, Yu Fabiao1, Chen Lingxin*1   

  1. 1. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
    2. College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supportted by the National Natural Science Foundation of China (No. 21275158), the Innovation Projects of the Chinese Academy of Sciences (No. KZCX2-EW-206), and the 100 Talents Program of the Chinese Academy of Sciences

PDF ( 3218 ) Cited
Export

EndNote

Ris

BibTeX

Following carbon monoxide and nitric oxide, hydrogen sulfide (H2S) is found to be the third endogenous gasotransmitter, which provides the regulation significance of physiological and pathological processes in the cardiovascular and nervous systems. Therefore, the selective recognition and detection of H2S are of importance. Fluorescent probe method, among biological detection technologies, is an indispensable technique for the biological species analysis, and that is highlighted by its good selectivity, high sensitivity, noninvasive detection, and real-time monitoring in situ. Recently, the development of fluorescent probes for intracellular H2S detection has been becoming one of the hot topics. Herein, the progress during the last three years of fluorescent molecular probes based on the small molecules for H2S detection are reviewed. These fluorescent probes are classified and concluded according to the different types of chemical reaction with H2S, and then arranged specifically by the fluorophores in different type. The design concepts of molecular structures, detection mechanism and biological applications of these probes are introduced. In addition, the relationship between molecular structures and properties while testing are elucidated. Finally, the challenge and application prospects for the development of hydrogen sulfide fluorescent probes are also discussed.

Contents
1 Introduction
2 Chemical strategies to design H2S fluorescent probes
2.1 Detection of H2S via reduction reactions
2.2 Detection of H2S via nucleophilic addition reactions
2.3 Detection of H2S via copper-sulfide precipitation
2.4 Detection of H2S via thiolysis reactions
2.5 Detection of H2S via redox reactions
3 Fluorescent probes based on the reduction reaction
3.1 H2S probes employ coumarin dyes as fluorophore
3.2 H2S probes employ naphthalimide dyes as fluorophore
3.3 H2S probes employ rhodamine dyes as fluorophore
3.4 H2S probes employ near-infrared fluorescent (including two-photon) dyes as fluorophore
3.5 H2S probes employ other dyes as fluorophore
4 Fluorescent probes based on the nucleophilic addition
4.1 H2S probes employ BODIPY dyes as fluorophore
4.2 H2S probes employ fluorescein dyes as fluorophore
4.3 H2S probes employ benzothiazole dyes as fluorophore
4.4 H2S probes employ cyanine dyes as fluorophore
4.5 H2S probes employ other dyes as fluorophore
5 Fluorescent probes based on the Cu-S precipitation
5.1 H2S probes employ fluorescein dyes as fluorophore
5.2 H2S probes employ cyanine dyes as fluorophore
5.3 H2S probes employ other dyes as fluorophore
6 Fluorescent probes based on the thiolysis reaction
7 Fluorescent probes based on mimics selenium enzyme
8 Fluorescent probes for other active sulfur species
8.1 Fluorescent probes for bisulfite anion
8.2 Fluorescent probes for sulfane sulfurs
9 Conclusion

CLC Number: 

[1] Kimura H, Nagai Y, Umemura K, Kimura Y. Antioxid. Redox. Sign., 2005, 7: 795.
[2] Li L, Rose P, Moore P K. Annu. Rev. Pharmacol. Toxicol., 2011, 51: 169.
[3] Kimura H. Amino Acids, 2011, 41: 113.
[4] Stipanuk M H, Ueki I. J. Inherit. MeTab. Dis., 2011, 34: 17.
[5] Dominy J E, Stipanuk M H. Nutr. Rev., 2004, 62: 348.
[6] Calvert J W, Coetzee W A, Lefer D J. Antioxid. Redox. Sign., 2010, 12: 1203.
[7] Lee M, Schwab C, Yu S, McGeer E, McGeer P L. Neurobiol. Aging, 2009, 30: 1523.
[8] Tripatara P, Patel N S, Brancaleone V, Renshaw D, Rocha J, Sepodes B, Mota-Filipe H, Perretti M, Thiemermann C. Eur. J. Pharmacol., 2009, 606: 205.
[9] Stipanuk M H, Beck P W. Biochem. J., 1982, 206: 267.
[10] Madden J A, Ahlf S B, Dantuma M W, Olson K R, Roerig D L. Appl. Physiol., 2012, 112: 411.
[11] Bhatia M, Wong F L, Fu D, Lau H Y, Moochhala S M, Moore P K. FASEB J., 2005, 19: 623.
[12] Yan H, Du J B, Tang C S. Biochem. Biophys. Res. Commun., 2004, 313: 22.
[13] Geng B, Yang J H, Qi Y F, Zhao J, Pang Y Z, Du J B, Tang C S. Biochem. Biophys. Res. Commun., 2004, 313: 362.
[14] Zhang C Y, Du J B, Bu D F, Yan H, Tang X Y, Tang C S. Biochem. Biophys. Res. Commun., 2003, 302: 810.
[15] Wang R. FASEB J., 2002, 16: 1792.
[16] Pandey S K, Kim K H. Environ. Sci. Technol., 2009, 43: 3020.
[17] Siegel L M. Anal. Biochem., 1965, 11: 126.
[18] Fischer E. Ber. Dtsch. Chem. Ges., 1883, 16: 2234.
[19] Searcy D G, Peterson M A. Anal. Biochem., 2004, 324: 269.
[20] Lawrence N S, Davis J, Jiang L, Jones T G, Davies S N, Compton R G. Electroanalysis, 2000, 12: 1453.
[21] Hannestad U, Margheri S, Srbo B. Anal. Biochem., 1989, 178: 394.
[22] Furne J, Saeed A, Levitt M D. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295: 1479.
[23] Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. Antioxid. Redox. Sign., 2009, 11: 205.
[24] Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4(12): 973.
[25] Kumar N, Bhalla V, Kumar M. Coord. Chem. Rev., 2013, 257: 2335.
[26] De Silva A P, Gunaratne H Q, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97: 1515.
[27] Grabowski Z R, Rotkiewicz K, Rettig W. Chem. Rev., 2003, 103: 3899.
[28] Miyasaka N, Hirata Y. Life Sci., 1997, 61: 2073.
[29] Yu F B, Li P, Wang B S, Han K L. J. Am. Chem. Soc., 2013, 135: 7674.
[30] Wu Z S, Li Z, Yang L, Han J H, Han S F. Chem. Commun., 2012, 48: 10120.
[31] Chen B F, Li W, Lv C, Zhao M M, Jin H W, Jin H F, Du J B, Zhang L R, Tang X J. Analyst, 2013, 138: 946.
[32] Li W H, Sun W, Yu X Q, Du L, Li M Y. J. Fluoresc., 2013, 23: 181.
[33] Wu M Y, Li K, Hou J T, Huang Z, Yu X Q. Org. Biomol. Chem., 2012, 10: 8342.
[34] Montoya L A, Pluth M D. Chem. Commun., 2012, 48: 4767.
[35] Yu C M, Li X Z, Zeng F, Zheng F Y, Wu S Z. Chem. Commun., 2013, 49: 403.
[36] Xuan W M, Pan R, Cao Y T, Liu K J, Wang W. Chem. Commun., 2012, 48: 10669.
[37] Sun K, Liu X L, Wang Y Y, Wu Z Q. RSC Adv., 2013, 3: 14543.
[38] Lippert A R, New E J, Chang C J. J. Am. Chem. Soc., 2011, 133: 10078.
[39] Lin V S, Lippert A R, Chang C J. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 7131.
[40] Zhang H T, Wang P, Chen G C, Cheung H Y, Yi L, Sun H Y. Tetrahedron. Lett., 2013, 138: 946.
[41] Yu F B, Li P, Song P, Wang B S, Zhao J Z, Han K L. Chem. Commun., 2012, 48: 2852.
[42] Zheng Y, Zhao M, Qiao Q L, Liu H Y, Lang H J, Xu Z C. Dyes. Pigm., 2013, 98: 367.
[43] Sun W, Fan J L, Hu C, Cao J F, Zhang H, Wang J Y, Cui S, Peng X J. Chem. Commun., 2013, 49: 3890.
[44] Wang R, Yu F B, Chen L X, Chen H, Wang L J, Zhang W W. Chem. Commun., 2012, 48: 11757.
[45] Das S K, Lim C S, Yang S Y, Han J H, Cho B R. Chem. Commun., 2012, 48: 8395.
[46] Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135: 9915.
[47] Mao G J, Wei T T, Wang X X, Huan S Y, Lu D Q, Zhang J, Zhang X B, Tan W H, Shen G L, Yu R Q. Anal. Chem., 2013, 85: 7875.
[48] Peng H J, Cheng Y F, Dai C F, King A L, Predmore B L, Lefer D J, Wang B H. Angew. Chem. Int. Ed. Engl., 2011, 50: 9672.
[49] Wan Q Q, Song Y C, Li Z, Gao X H, Ma H M. Chem. Commun., 2013, 49: 502.
[50] Chen S, Chen Z J, Ren W, Ai H W. J. Am. Chem. Soc., 2012, 134: 9589.
[51] Zhou G D, Wang H L, Ma Y, Chen X Q. Tetrahedron, 2012, 69: 867.
[52] Zheng K B, Lin W Y, Tan L. Org. Biomol. Chem., 2012, 10: 9683.
[53] Chen T, Zheng Y, Xu Z C, Zhao M, Xu Y N, Cui J N. Tetrahedron. Lett., 2013, 49: 7510.
[54] Qian Y, Zhang L, Ding S T, Deng X, He C, Zheng X E, Zhu H L, Zhao J. Chem. Sci., 2012, 3: 2920.
[55] Qian Y, Karpus J, Kabil O, Zhang S Y, Zhu H L, Banerjee R, Zhao J, He C. Nat. Commun., 2011, 2: 495
[56] Li X, Zhang S, Cao J, Xie N, Liu T, Yang B, He Q J, Hu Y Z. Chem. Commun., 2013, 49: 8656.
[57] Liu C R, Pan J, Li S, Zhao Y, Wu L Y, Berkman C E, Whorton A R, Xian M. Angew. Chem., 2011, 123: 10511.
[58] Liu C R, Peng B, Li S, Park C M, Whorton A R, Xian M. Org. Lett., 2012, 14: 2184.
[59] Xu Z, Xu L, Zhou J, Xu Y F, Zhu W P, Qian X H. Chem. Commun., 2012, 48: 10871.
[60] Chen Y C, Zhu C C, Yang Z H, Chen J J, He Y F, Jiao Y, He W, Qiu L, Cen J J, Guo Z J. Angew. Chem., 2013, 125: 1732.
[61] Wang X, Sun J, Zhang W H, Ma X X, Lv J Z, Tang B. Chem. Sci., 2013, 4: 2551.
[62] Liu J, Sun Y Q, Zhang J Y, Yang T, Cao J B, Zhang L S, Guo W. Chem. A Eur. J., 2013, 19: 4717.
[63] Choi M G, Cha S, Lee H, Jeon H L, Chang S K. Chem. Commun., 2009, 7390.
[64] Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T. J. Am. Chem. Soc., 2011, 133: 18003.
[65] Hou F P, Huang L, Xi P X, Cheng J, Zhao X F, Xie G Q, Shi Y J, Cheng F J, Yao X J, Bai D C. Inorg. Chem., 2012, 51: 2454.
[66] Hou F P, Cheng J, Xi P, Chen F J, Huang L, Xie G Q, Shi Y J, Liu H Y, Bai D C, Zeng Z Z. Dalton. Trans., 2012, 41: 5799.
[67] Cao X W, Lin W Y, He L W. Org. Lett., 2011, 13: 4716.
[68] Wang M Q, Li K, Hou J T, Wu M Y, Huang Z, Yu X Q. J. Org. Chem., 2012, 77: 8350.
[69] Zhang L, Lou X D, Yu Y, Qin J G, Li Z. Macromolecules, 2011, 44: 5186.
[70] Qu X Y, Li C J, Chen H C, Mack J, Guo Z J, Shen Z. Chem. Commun., 2013, 49: 7510.
[71] Liu T Y, Zhang X F, Qiao Q L, Zou C Y, Feng L, Cui J N, Xu Z C. Dyes. Pigm., 2013, 99: 537.
[72] Liu T Y, Xu Z C, Spring D R, Cui J N. Org. Lett., 2013, 15: 2310.
[73] Cao X W, Lin W Y, Zheng K B, He L W. Chem. Commun., 2012, 48: 10529.
[74] Nagy P, Winterbourn C C. Chem. Res. Toxicol., 2010, 23: 1541.
[75] Kimura Y, Goto Y I, Kimura H. Antioxid. Redox. Sign., 2010, 12: 1.
[76] Wang B S, Li P, Yu F B, Song P, Sun X F, Yang S Q, Lou Z R, Han K L. Chem. Commun., 2013, 49: 1014.
[77] Wang B S, Li P, Yu F B, Chen J S, Qu Z J, Han K L. Chem. Commun., 2013, 49: 5790.
[78] Lou Z R, Li P, Pan Q, Han K L. Chem. Commun., 2013, 49: 2445.
[79] Yang X F, Zhao M L, Wang G. Sensors and Actuators B: Chemical, 2011, 152: 8.
[80] Chen K Y, Guo Y, Lu Z H, Yang B Q, Shi Z. Chin. J. Chem., 2010, 28: 55.
[81] Sun Y Q, Wang P, Liu J, Zhang J Y, Guo W. Analyst, 2012, 137: 3430.
[82] Wu M Y, He T, Li K, Wu M B, Huang Z, Yu X Q. Analyst, 2013, 138: 3018.
[83] Choi M G, Hwang J, Eor S, Chang S K. Org. Lett., 2010, 12: 5624.
[84] Li G Y, Chen Y, Wang J Q, Lin Q, Zhao J, Ji L N, Chao H. Chem. Sci., 2013, 4: 4426.
[85] Chen W, Liu C R, Peng B, Zhao Y, Pacheco A, Xian M. Chem. Sci., 2013, 4: 2892.

[1] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[2] Zhiming Huo, Gongke Li*, Xiaohua Xiao*. Applications of Organic Photochromic Materials in Rapid Visual Detection [J]. Progress in Chemistry, 2017, 29(2/3): 252-261.
[3] . Bionic Interaction of Metalloporphyrins with Various Gaseous Molecules [J]. Progress in Chemistry, 2009, 21(04): 771-776.
[4] Hong Wang|Huashan Zhang**. Fluorescent Labeling Reagents and Molecular Probes used in Separation and Detection of Bioactive Substances [J]. Progress in Chemistry, 2007, 19(05): 633-642.