中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 976-986 DOI: 10.7536/PC131139 Previous Articles   Next Articles

• Review •

Bioactivities and Synthesis of Trifluoromethyl Alkyl Ketones

Yang Dongmei, Zhou Yuhan*, Chang Qing, Zhao Yilong, Qu Jingping   

  1. State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21376040), the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China (No.20121707) and the Fundamental Research Funds for the Central Universities (No.DUT13LAB03)

PDF ( 1883 ) Cited
Export

EndNote

Ris

BibTeX

With high lipophicity and metabolic stability, trifluoromethyl alkyl ketones (TFMKs) act as important bioactive molecules, especially enzyme inhibitors. Besides, they are superior intermediates for pharmaceuticals and materials. Due to severe electrophilicity of trifluoromethyl, TFMKs form covalent hemiketal adducts targeting at many hydrolytic enzymes such as phospholipase A2 (PLA2) both in mammal and plant, human leukocyte elastase, oleamide hydrolase, human plasma kallikrein, pig liver esterase. TFMKs are inhibitors of human renin in the regulation of blood pressure and electrolyte homeostasis. Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes have been presented by XRD and NMR spectroscopy, this inhibition is depended on pH. TFMKs are also served as outstanding inhibitors of SARS-CoV 3CL protease. Diversity methods have been used in synthesis of TFMKs, involving the reactions of organometallic reagent like Grignard reagent or alkyl lithium with trifluoromethyl acid, acetate, or their salts, ester or amide react with TMSCF3 or Et3GeNa/PhSCF3 to generate nucleophilic trifluoromethylation, treatment of carboxylic acid chlorides with pyridine and trifluoroacetic anhydride, sulfone-mediated synthesis of TFMKs from alkyl and alkenyl bromides, oxidation of trifluoromethyl carbinols, catalytic aerobic oxidative decarboxylation of trifluoromethylhydroxy acids, conversion of trifluoroethyl amines by the treatment of NBS/DBU, conversion of enolizable carboxylic acids to TFMKs via enediolate trifluoroacetylation/decarboxylation, and ring opening of alkyl 2-siloxycyclopropanecarboxylates by triethylamine trihydrofluoride. Bioactive TFMKs on enzyme inhibition are summarized and synthesis methods are discussed in this paper, trend on both application and preparation are described.

Contents
1 Introduction
2 Possible mechanism and bioactivities of TFMKs
2.1 Inhibition on phospholipase A2(PLA2)
2.2 Inhibition on FAAH hydrolases
2.3 Inhibition on AChE
2.4 Inhibition on chymotrypsin
2.5 Inhibition on SARS-CoV 3CL
2.6 Inhibition on juvenile hormone esterase
2.7 Inhibition on other hydrolases
3 Synthesis of TFMKs
3.1 Organometallic reagent with trifluoromethyl acid, acetate, or their salts
3.2 Nucleophilic trifluoromethylation with TMSCF3 or Et3GeNa/PhSCF3
3.3 Carboxylic acid chlorides with pyridine and trifluoroacetic anhydride
3.4 Ethanolysis after condensation
3.5 Oxidation of trifluoromethylcarbinols
3.6 Trifluoroacetic ester/ketone exchange
3.7 Other methods
4 Conclusion and outlook

CLC Number: 

[1] Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881.
[2] Furuya T, Kamlet A S, Ritter T. Nature, 2011, 473: 470.
[3] Ismail F M D. J. Fluorine Chem., 2002, 118 (1-2): 27.
[4] Purser S, Moore P R, Swallow S, Gouverneur V. Chem. Soc. Rev., 2008, 37 (2): 320.
[5] Pierce M E, Parsons R L, Jr, Radesca L A, Lo Y S, Silverman S, Moore J R, Islam Q, Choudhury A, Fortunak J M D, Nguyen D, Luo C, Morgan S J, Davis W P, Confalone P N. J. Org. Chem., 1998, 63 (23): 8536.
[6] 刘金涛 (Liu J T). 化学通报 (Chemistry), 2001, 1: 60.
[7] Wang Y S, Fang X Q, Chen H Y, Wu B, Wang Z Y U. Hilty C, Liu W R. ACS Chem. Biol., 2013, 8: 405.
[8] Zhang H, Li Y, Jiang Z X. J. Biomol. Res. Ther. 2012, 1: e107.
[9] Olvera L I, Guzmán-Gutiérrez M T, Zolotukhin M G, Fomine S, Cárdenas J, Ruiz-Trevino F A, Villers D, Ezquerra T A, Prokhorov E. Macromolecules, 2013, 46: 7245.
[10] Kiss L E, Ferreira H S, Learmonth D A. Org. Lett., 2008, 10: 1835.
[11] Grellepois F, Chorki F, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J P. J. Org. Chem., 2002, 67: 1253.
[12] Hagmann W K. J. Med. Chem., 2008, 51: 4359.
[13] Linderman R J, Jamois E A. J. Fluorine Chem., 1991, 53: 79.
[14] Nagib D A, MacMillan D W C. Nature, 2011, 480: 224.
[15] 何伟明 (He W M),翁志强 (Weng Z Q). 化学进展(Progress in Chemistry), 2013, 25(7): 1071.
[16] 戚自松 (Qi Z S),董亚丽 (Dong Y L),李亚明 (Li Y M),段春迎 (Duan C Y). 化学进展 (Progress in Chemistry), 2012, 24(11): 2177.
[17] Cho E J, Senecal T D, Kinzel T, Zhang Y, Watson D A, Buchwald S L. Science, 2010, 328: 1679.
[18] 卿凤翎 (Qing F L). 有机化学 (Chin. J. Org. Chem.), 2012, 32: 815.
[19] Yang Y, Huanga Y, Qing F-L. Tetrahedron Lett., 2013, 54: 3826.
[20] Gao J-R, Wu H, Xiang B, Yu W-B, Han L, Jia Y-X. J. Am. Chem. Soc. 2013, 135: 2983.
[21] Liu M, Li J, Xiao X, Xie Y, Shi Y. Chem. Commun., 2013, 49: 1404.
[22] Zheng Y, Xiong H-Y, Nie J, Hua M-Q, Ma J-A. Chem. Commun., 2012, 48: 4308.
[23] Zhao Q-Y, Huang L, Wei Y, Shi M. Adv. Synth. Catal., 2012, 354: 1926.
[24] Liang T C, Abeles R H. Biochemistry, 1987, 26: 7603.
[25] Sydnes M O, Hayashi Y, Sharma V K, Hamada T, Bacha U, Barrila J, Freire E, Kiso Y. Tetrahedron, 2006, 62: 8601.
[26] Bacha U, Barrila J, Gabelli B, Kiso Y, Amzel L M, Freire E. Chem. Biol. Drug Des., 2008, 72: 34.
[27] Tripathi T, Abdi M, Alizadeh H. Experimental Eye Research, 2013, 113: 182.
[28] Edwards P D, Bernstein P R. Medicinal Research Reviews, 1994, 14: 127.
[29] de la Sierra I L, Papamichael E, Sakarellos C, Dimicoli J L, Prangé T. J. Mol. Recogn., 1990, 3: 36.
[30] Takahashi L H, R. Radhakrishnan R E, Rosenfield Jr R E, Meyer Jr E F, Trainor D A, Stein M. J. Mol. Biol., 1988, 201: 423.
[31] Gelb M H, Svaren J P, Abeles R H. Biochemistry, 1985, 24: 1813.
[32] Imperiali B, Abeles R H. Biochemistry, 1986, 25: 3760.
[33] Tripathi T, Smith A D, Abdi M, Alizadeh H. IOVS, 2012, 53: 7973.
[34] Huwiler A, Feuerherm A J, Sakem B, Pastukhov O, Filipenko I, Nguyen T, Johansen B. Br. J. Pharmacol., 2012, 167: 1691.
[35] Jin Z W, Kim H K, Lee C H, Jung S W, Shin S J, Im S Y, Cho B H, Lee H K. J. Dermatol. Sci., 2012, 67: 88.
[36] Zhang J, Barasch N, Li R C, Sapirstein A. Brain Res., 2012, 1471: 129.
[37] Rodríguez Diez G, Uranga R M, Mateos M V, Giusto N M, Salvador G A. Neurochem. Int., 2012, 61: 749.
[38] Tronoa D, Socciob M, Lausb M N, Pastoreb D. Plant Sci., 2013, 199-200: 91.
[39] Ortar G, Cascio M G, De Petrocellis L, Morera E, Rossi F, Schiano-Moriello A, Nalli M, de Novellis V, Woodward D F, Maione S, Di Marzo V. J. Med. Chem., 2007, 50: 6554.
[40] López-Rodríguez M L, Viso A, Ortega-Gutiérrez S, Fowler C J, Tiger G, de Lago E, Fernández-Ruiz J, Ramos J A. J. Med. Chem., 2003, 46: 1512.
[41] Alexander J P, Cravatt B F. J. Am. Chem. Soc., 2006, 128: 9699.
[42] Anthony Romero F, Hwang I, Boger D L. J. Am. Chem. Soc., 2006, 128: 14004.
[43] Patricelli M P, Cravatt B F. Biochemistry, 2001, 40: 6107.
[44] Patricelli M P, Lovato M A, Cravatt B F. Biochemistry, 1999, 38: 9804.
[45] Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B, Mechoulam R, Buettner R, Werner S, Di Marz V, Tüting T, Zimmer A. Science, 2007, 316: 1494.
[46] Tubert-Brohman I, Acevedo O, Jorgensen W L. J. Am. Chem. Soc., 2006, 128: 16904.
[47] Patterson J E, Ollmann I R, Cravatt B F, Boger D L, Wong C H, Lerner R A. J. Am. Chem. Soc., 1996, 118: 5938.
[48] 勒尔纳 R A,王 C H,波格尔 D L,亨克森 S H. CN1228764A, 1999.
[49] Allen K N, Abeles R H. Biochemistry, 1989, 28: 8466.
[50] Brady K, Wei A, Ringe D, Abeles R H. Biochemistry, 1990, 29: 7600.
[51] Westler W M, Frey P A, Lin J, Wemmer D E, Morimoto H, Williams P G, Markley J L. J. Am. Chem. Soc., 2002, 124: 4196.
[52] Regnier T, Sarma D, Hidaka K, Bacha U, Freire E, Hayashi Y, Kiso Y. Bioorg. Med. Chem. Lett., 2009, 19: 2722.
[53] Shao Y M, Yang W B, Kuo T H, Tsai K C, Lin C H, Yang A S, Liang P H, Wong C H. Bioorg. Med. Chem., 2008, 16: 4652.
[54] Abdel-Aal Y A I, Hammock B D. Science, 1986. 233: 1073.
[55] Wheelock C E, Nakagawa Y, Akamatsu M, Hammock B D. Bioorg. Med. Chem., 2003, 11: 5101.
[56] Nyormoi O, Wang Z, Bar-Eli M. Apoptosis, 2003, 8: 371.
[57] Aparna Lakshmi I, Madhusudhan T, Praveen Kumar D, Padmavathy J, Saravanan D, Praveen Kumar Ch. Int. J. Pharm. Sci. Rev. Res., 2011, 10: 38.
[58] Prestwich G D, Eng W S, Roe R M, Hammock B D. Arch. Biochem. Biophys., 1984, 228: 639.
[59] Allen K N, Abeles R H., Biochemistry, 1989, 28: 135.
[60] Stein R L, Strimpler A M, Edwards P D, Lewis J J, Mauger R C, Schwartz J A, Stein M M, Amy Trainor D, Wildonger R A, Zottola M A. Biochemistry, 1987, 26: 2682.
[61] Veale C A, Damewood J R, Jr, Steelman G B, Bryant C, Gomes B, Williams J J. Med. Chem., 1995, 38: 86.
[62] Govardhan C P, Abeles R H. Arch. Biochem. Biophys., 1990, 280: 137.
[63] Brady K, Liang T C, Abeles R H. Biochemistry, 1989, 28: 9066.
[64] Tarnus C, Jung M J, Rémy J M, Baltzer S, Schirlin D G. FEBS Lett., 1989, 249: 47.
[65] Patel D V, Rielly-Gauvin K, Ryono D E, Free C A, Smith S A, Petrillo Jr E.W. J. Med. Chem., 1993, 36: 2431.
[66] Oishi M, Kondo H, Amii H. Chem. Commun., 2009: 1909.
[67] Tomashenko O A, Grushin V V. Chem. Rev., 2011, 111: 4475.
[68] Dishart K T, Levine R. J. Am. Chem. Soc. 1956, 78: 2268.
[69] Bluhm H F, Donn H Y, Zook H D. J. Am. Chem. Soc. 1955, 77: 4406.
[70] 龚跃法 (Gong Y F), 徐绍芳 (Xu S F), 陈典文 (Chen D W). 化学试剂 (Chemical Reagents ), 1995, 17: 313.
[71] 胡正 (Hu Z), 周强 (Zhou Q), 耿为利 (Geng W L), 兰喜平 (Lan X P). CN103224447A, 2013.
[72] Zou L F, Paton R S, Eschenmoser A, Newhouse T R, Baran P S, Houk K N. J. Org. Chem., 2013, 78: 4037.
[73] Decroos C, Bowman C M, Christianson D W. Bioorg. Med. Chem., 2013, 21: 4530.
[74] Wiedemann J, Heiner T, Mloston G, Prakash G K S, Olah G A. Angew. Chem. Int. Ed., 1998, 37: 820.
[75] Singh R P, Cao G, Kirchmeier R L, Shreeve J M. J. Org. Chem., 1999, 64: 2873.
[76] Rudzinski D M, Kelly C B, Leadbeater N E. Chem. Commun., 2012, 48: 9610.
[77] Yokoyama Y, Mochida K. Synlett, 1997: 907.
[78] Boivin J, Kaim L E, Zard S Z. Tetrahedron, 1995, 51: 2573.
[79] Kelly C B, Mercadante M A, Leadbeater N E. Chem. Commun., 2013, 49: 11133.
[80] Frey R R, Wada C K, Garland R B, Curtin M L, Michaelides M R, Li J, Pease L J, Glaser K B, Marcotte P A, Bouska J J, Murphy S S, Davidsen S K. Bioorg. Med. Chem. Lett., 2002, 12: 3443.
[81] Jose B, Oniki Y, Kato T, Nishino N, Sumida Y, Yoshida M. Bioorg. Med. Chem. Lett., 2004, 14: 5343.
[82] Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, Dennis E A, Kokotos G. J. Med. Chem., 2008, 51: 8027.
[83] Reeves J T, Gallou F, Song J J, Lee H, Yee N K, Senanayake C H. Tetrahedron Lett., 2007, 48: 189.
[84] Reeves J T, Fandrick D R, Tan Z l, Song J J, Rodriguez S, Qu B, Kim S, Niemeier O, Li Z, Byrne D, Campbell S, Chitroda A, De Croos P, Fachinger T, Fuchs V, Gonnella N C, Grinberg N, Haddad N, Jger B, Lee H, Lorenz J C, Ma S, Narayanan B A, Nummy L J, Premasiri A, Roschangar F, Sarvestani M, Shen S, Spinelli E, Sun X F, Varsolona R J, Yee N, Brenner M, Senanayake C H. J. Org. Chem., 2013, 78: 3616.
[85] Fandrick D R, Reeves J T, Bakonyi J M, Nyalapatla P R, Tan Z l, Niemeier O, Akalay D, Fandrick K R, Wohlleben W, Ollenberger S, Song J J, Sun X F, Qu B, Haddad N, Sanyal S, Shen S, Ma S l, Byrne D, Chitroda A, Fuchs V, Narayanan B A, Grinberg N, Lee H, Yee N, Brenner M, Senanayake C H. J. Org. Chem., 2013, 78: 3592.
[86] McBee E, Hathaway C, Roberts C. J. Am. Chem. Soc., 1956, 78: 4053.
[87] Reeves J T, Song J J, Tan Z, Lee H, Yee N K, Senanayake C H. J. Org. Chem., 2008, 73: 9476.
[88] Linderman R J, Graves D M. Tetrahedron Lett., 1987, 28: 4259.
[89] Tanaka Y, Ishihara T, Konno T. J. Fluorine Chem., 2012, 137: 99.
[90] Kelly C B, Mercadante M A, Hamlin T A, FletcherM H, Leadbeater N E. J. Org. Chem., 2012, 77: 8131.
[91] Yang D, Zhou Y, Xue N, Qu J. J. Org. Chem., 2013, 78: 4171.
[92] Chang Y, Cai C. J. Fluorine Chem., 2005, 126: 937.
[93] Munoz L, Rosa E, Bosch M P, Guerrero A. Tetrahedron Lett., 2005, 46: 3311.
[94] Blay G, Fernandez I, Marco-Aleixandre A, Monje B, Pedro J R, Ruiz R. Tetrahedron, 2002, 58: 8565.
[95] Kim S, Kavali R. Tetrahedron Lett., 2002, 43: 7189.
[96] Bégué J P, Mesureur D. Synthesis, 1989, 4: 309.
[97] Derstine C W, Smith D N, Katzenellenbogen J A. J. Am. Chem. Soc., 1996, 118: 8485.
[98] Gladow F G, Reissig H U. Synthesis, 2013, 45: 2179.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.