中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 756-771 DOI: 10.7536/PC131125 Previous Articles   Next Articles

• Review •

Ordered Mesoporous Carbon Materials Synthesized by Organic-Organic Self-Assembly

Liu Lei1,2, Yuan Zhongyong*1   

  1. 1. Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China;
    2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51302154), the 111 project (B12015) and the Program for Innovation Research Team in University (IRT13022)

PDF ( 4253 ) Cited
Export

EndNote

Ris

BibTeX

Ordered mesoporous carbon materials have attracted great research interests due to their extremely large surface area, uniform pore size, high thermal stability and chemical inertness, which have been widely used in the areas including catalysis, adsorption, energy storage and conversion. The direct synthesis strategy from organic-organic self-assembly involving the combination of polymerizable precursors and block copolymer templates is expected to be more flexible in preparing mesoporous carbons, compared with the traditional nanocasting strategy of fussy and high-cost procedures using mesoporous silica materials as the hard template. In this critical review, we present the fundamentals and recent advances related to the researches of ordered mesoporous carbon materials from the direct synthesis strategy of block copolymer soft-templating, with a focus on their controllable preparation, modification and potential applications. Under the guidance of their formation mechanism, the preparation of ordered mesoporous carbons are detailedly discussed by synthetic pathways, including evaporation induced self-assembly method, dilute aqueous route, macroscopic phase separation and hydrothermal autoclaving process. The mesopore size and morphology control, and the hybrid carbon materials are also demonstrated. The potential applications of pure and modified mesoporous carbons in adsorption, catalysis and electrochemistry are detailed discussed. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of ordered mesoporous carbons.

Contents
1 Introduction
2 Synthesis of ordered mesoporous carbon
2.1 Synthesis mechanism
2.2 Synthesis pathway
2.3 Mesostructure control
2.4 Pore size control
2.5 Morphology control
2.6 Hybrid carbon materials
3 Applications
3.1 Gas adsorption and storage
3.2 Dye and protein adsorption
3.3 Electrode materials for supercapacitors
3.4 Catalysis
4 Conclusion and outlook

CLC Number: 

[1] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. J. Am. Chem. Soc., 1992, 114:10834.
[2] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 2:548.
[3] Zhao D Y, Huo Q S, Feng J L, Chmeika B F, Stucky G D. J. Am. Chem. Soc., 1998, 120:6024.
[4] Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Angew. Chem. Int. Ed., 2003, 42: 3146.
[5] Fan J, Yu C Z, Lei J, Zhang Q, Li T C, Tu B, Zhou W Z, Zhao D Y. J. Am. Chem. Soc., 2005, 127:10794.
[6] Shen S D, Garcia-Bennett A E, Liu Z, Lu Q Y, Shi Y F, Yan Y, Yu C Z, Liu W C, Cai Y, Terasaki O, Zhao D Y. J. Am. Chem. Soc., 2005, 127:6780.
[7] Jun S, Joo S H, Ryoo R. J. Am. Chem. Soc., 2000, 122:10712.
[8] Ryoo R, Joo S H, Kruk M, Jaroniec M. Adv. Mater., 2001, 13:677.
[9] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103:7743.
[10] Kim S S, Zhang W Z, Pinnavaia T J. Science, 1998, 282: 1302.
[11] Kim S S, Pauly T R, Pinnavaia T J. Chem. Commun., 2000, 1661.
[12] Kleitz F, Choi S H, Ryoo R. Chem. Commun., 2003, 2136.
[13] Kim T W, Kleitz F, Paul B, Ryoo R. J. Am. Chem. Soc., 2005, 127:7601.
[14] Tian B Z, Liu X Y, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky G D, Zhao D Y. Nat. Mater., 2003, 2:159.
[15] Nghiem Q D, Kim D P. Chem. Mater., 2008, 20:3735.
[16] Malenfant P R L, Wan J L, Taylor S T, Seth T T, Mohan M. Nat. Nanotechnol., 2007, 2:43.
[17] Mizoshita N, Tani T, Inagaki S. Chem. Soc. Rev., 2011, 40: 789.
[18] Ma T Y, Li H, Deng Q F, Liu L, Yuan Z Y. Chem. Mater., 2012, 24:2253.
[19] Ma T Y, Yuan Z Y. ChemSusChem, 2011, 4:1407.
[20] Nakagawa H, Watanabe K, Harada Y, Miura K. Carbon, 1999, 37:1455.
[21] Bae J S, Bhatia S K. Energy Fuels, 2006, 20:2599.
[22] Kyotani T, Ma Z, Tomita A. Carbon, 2003, 41:1451.
[23] Hou P X, Orikasa H, Yamazaki T, Matsuoka K, Tomita A, Setoyama N, Fukushima Y, Kyotani T. Chem. Mater., 2005, 17:518.
[24] Yu J S, Kang S, Yoon S B, Chai G. J. Am. Chem. Soc., 2002, 124:9382.
[25] Baumann T F, Satcher J H. Chem. Mater., 2003, 15: 3745.
[26] Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H. Chem. Mater., 1996, 8:454.
[27] Horikawa T, Hayashi J, Muroyama K. Carbon, 2004, 42:169.
[28] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103:7743.
[29] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Chem. Commun., 1999, 2177.
[30] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Oshuma T, Teresaki O. J. Am. Chem. Soc., 2000, 122:10712.
[31] Li H C, Sakamoto Y, Li Y S, Terasakib O, Thommesc M, Che S A. Micropor. Mesopor. Mater., 2006, 95:193.
[32] Kim S S, Pinnavaia T J. Chem. Commun., 2001, 2418.
[33] Lee J, Yoon S, Oh S M, Shin C H, Hyeon T. Adv. Mater., 2000, 12:359.
[34] Liang C, Hong K, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43:5785.
[35] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, 2125.
[36] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44:7053.
[37] Moriguchi I, Ozono A, Mikuriya K, Teraoka Y, Kagawa S, Kodama M. Chem. Lett., 1999, 1171.
[38] Lee K T, Oh S M. Chem. Commun., 2002, 2722.
[39] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem Mater., 2006, 18:4447.
[40] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46:1089.
[41] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J. Am. Chem. Soc., 2005, 127:13508.
[42] Meng Y, Gu D, Zhang F Q, Yan Y, Chen Z X, Tu B, Zhao D Y. Chem. Mater., 2006, 18:5279.
[43] Huang Y, Yang J P, Cai H Q, Zhai Y P, Feng D, Deng Y H, Tu B, Zhao D Y. J. Mater. Chem., 2009, 19:6536.
[44] Wang X Q, Liang C D, Dai S. Langmuir, 2008, 24:7500.
[45] Schlienger S, Graff A L, Celzard A, Parmentier J. Green Chem., 2012, 14:313.
[46] Liang Y R, Fu R W, Wu D C. ACS Nano, 2013, 7: 1748.
[47] 刘 蕾 (Liu L), 袁忠勇 (Yuan Z Y).中国科技论文在线(Sciencepaper Online), 2011, 6(3):161.
[48] Jin J, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2009, 1371.
[49] Kimijima K, Hayashi A, Yagi I. Chem. Commun., 2008, 5809.
[50] Florent M, Xue C F, Zhao D Y, Goldfarb D. Chem. Mater., 2012, 24:383.
[51] Liang Y R, Lu S H, Wu D C, Sun B, Xu F, Fu R W. J. Mater. Chem. A, 2013, 1:3061.
[52] Liu D, Lei J H, Guo L P, Qu D Y, Li Y, Su B L. Carbon, 2012, 50:476.
[53] Gao P, Wang A Q, Wang X D, Zhang T. Chem. Mater., 2008, 20:1881.
[54] Zhao X C, Wang A Q, Yan J W, Sun J, Sun L, Zhang T. Chem. Mater., 2010, 22:5463.
[55] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128: 5316.
[56] Lu A H, Spliethoff B, Schüth F. Chem. Mater., 2008, 20: 5314.
[57] Vercaemst C, Ide M, Allaert B, Ledoux N, Verpoorta F, Voort P V D. Chem. Commun., 2007, 2261.
[58] Cundy C S, Cox P A. Chem. Rev., 2003, 103:663.
[59] Liu L, Wang F Y, Shao G S, Yuan Z Y. Carbon, 2010, 48:2089.
[60] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webleyb P A, Zhao D Y. Chem. Commun., 2008, 2641.
[61] Wan Y, Shi Y F, Zhao D Y. Chem. Commun., 2007, 897.
[62] Huang Y, Cai H Q, Yu T, Sun X L, Tu B, Zhao D Y. Chem. Asian J., 2007, 2:1282.
[63] Schwuger M J. J. Colloid Interf. Sci., 1973, 42:491.
[64] Liu R L, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J. Am. Chem. Soc., 2006, 128:11652.
[65] Liu L, Wang F Y, Shao G S, Yuan Z Y. Carbon, 2010, 48:2660.
[66] Meng Y, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D Y. J. Am. Chem. Soc., 2007, 129:1690.
[67] Zhang J Y, Deng Y H, Wei J, Sun D K, Gu D, Bongard H, Liu C, Wu H H, Tu B, Schüth F, Zhao D Y. Chem. Mater., 2009, 21:3996.
[68] Liang Y R, Wu D C, Fu R W. Langmuir, 2009, 25:7783.
[69] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L J, Wang C C, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19:3271.
[70] Wang Z Y, Stein A. Chem. Mater., 2008, 20:1029.
[71] Xue C F, Tu B, Zhao D Y. Adv. Funct. Mater., 2008, 18:3914.
[72] Liang Y R, Li Z H, Fu R W, Wu D C. J. Mater. Chem. A, 2013, 1:3768.
[73] Zhang F Q, Gu D, Yu T, Zhang F, Xie S H, Zhang L J, Deng Y H, Wan Y, Tu B, Zhao D Y. J. Am. Chem. Soc., 2007, 129:7746.
[74] Gu D, Bongard H, Meng Y, Miyasaka K, Terasaki O, Zhang F Q, Deng Y H, Wu Z X, Feng D, Fang Y, Tu B, Schüth F, Zhao D Y. Chem. Mater., 2010, 22:4828.
[75] Zheng M B, Cao J M, Ke X F, Ji G B, Chen Y P, Shen K, Tao J. Carbon, 2007, 45:1111.
[76] Martin S, Liang C, Lynn G W, Gösele U, Dai S. Chem. Mater., 2007, 19:2383.
[77] Wang K X, Birjukovs G, Erts D, Phelan R, Morris M A, Zhou H S, Holmes J D. J. Mater. Chem., 2009, 19:1331.
[78] Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. J. Mater. Chem., 2010, 20:4223.
[79] Yan X, Song H H, Chen X H. J. Mater. Chem., 2009, 19:4491.
[80] Yan Y, Zhang F Q, Meng Y, Tu B, Zhao D Y. Chem. Commun., 2007, 2867.
[81] Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2010, 49:7987.
[82] Wu Z X, Wu W D, Liu W J, Selomulya C, Chen X H, Zhao D Y. Angew. Chem. Int. Ed., 2013, 52:13764.
[83] Sun Z K, Liu Y, Li B, Wei J, Wang M H, Yue Q, Deng Y H, Kaliaguine S, Zhao D Y. ACS Nano, 2013, 7:8706.
[84] Long D H, Lu F, Zhang R, Qiao W M, Zhan L, Liang X Y, Ling L C. Chem. Commun., 2008, 2647.
[85] Wan Y, Qian X F, Jia N Q, Wang Z Y, Li H X, Zhao D Y. Chem. Mater., 2008, 20:1012.
[86] Wang X Q, Lee J S, Zhu Q, Liu J, Wang Y, Dai S. Chem. Mater., 2010, 22:2178.
[87] Zhao X C, Wang A Q, Yan J W, Sun J, Sun G, Zhang T. Chem. Mater., 2010, 22:5463.
[88] Wu Z X, Webley P A, Zhao D Y. Langmuir, 2010, 26:10277.
[89] Xing R, Liu Y M, Wang Y, Chen L, Wu H, Jiang Y, He M, Wu P. Micropor. Mesopor. Mater., 2007, 105:41.
[90] Xing R, Liu N, Liu Y M, Wu H H, Jiang Y W, Chen L, He M Y, Wu P. Adv. Funct. Mater., 2007, 17:2455.
[91] Peng L, Philippaerts A, Ke X X, Noyen J V, Clippel F D, Tendeloo G V, Jacobs P A, Sels B F. Catal. Today, 2010, 150:140.
[92] Janaun J, Ellis N. Appl. Catal. A: General, 2011, 394:25.
[93] Liu R, Wang X Q, Zhao X, Feng P Y. Carbon, 2008, 46:1664.
[94] Wu Z X, Hao N, Xiao G K, Liu L, Webley P, Zhao D. Phys. Chem. Chem. Phys., 2011, 13:2495.
[95] Li Q, Xu J, Wu Z X, Feng D, Yang J P, Wei J, Wu Q L, Tu B, Cao Y, Zhao D Y. Phys. Chem. Chem. Phys., 2010, 12:10996.
[96] Zhai Y P, Dou Y Q, Liu X X, Park S S, Ha C S, Zhao D Y. Carbon, 2011, 49:545.
[97] She L, Li J, Wan Y, Yao X D, Tu B, Zhao D Y. J. Mater. Chem., 2011, 21:795.
[98] Qian X F, Wan Y, Wen Y L, Wen Y, Jia N, Li H, Zhao D. J. Colloid. Interface. Sci., 2008, 328:367.
[99] Liu R L, Ren R J, Shi Y F, Zhang F, Zhang L J, Tu B, Zhao D Y. Chem. Mater., 2008, 20:1140.
[100] Liu L, Deng Q F, Ma T Y, Lin X Z, Hou X X, Yuan Z Y. J. Mater. Chem., 2011, 21:16001.
[101] Stohr B, Boehm H P, Schlogl R. Carbon, 1991, 37:707.
[102] Boehm H P, Mair G, Stoehr T, Rincón A R, Tereczki B. Fuel, 1984, 63:1061.
[103] Liu L, Deng Q F, Hou X X, Yuan Z Y. J. Mater. Chem., 2012, 22:15540.
[104] Hao G P, Li W C, Qian D, Lu A H. Adv. Mater., 2010, 22:853.
[105] Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüeth F, Bongard H J, Lu A H. J. Am. Chem. Soc., 2011, 133:11378.
[106] Wei J, Zhou D D, Sun Z K, Deng Y H, Xia Y Y, Zhao D Y. Adv. Funct. Mater., 2013, 23:2322.
[107] Wu Z X, Webley P A, Zhao D Y. J. Mater. Chem., 2012, 22:11379.
[108] Xia K S, Gao Q M, Wu C D, Song S Q, Ruan M L. Carbon, 2007, 45:1989.
[109] Xia Y D, Walker G S, Grant D M, Mokaya R. J. Am. Chem. Soc., 2009, 131:16493.
[110] Zhou H S, Zhu S S, Honma I, Seki K. Chem. Phys. Lett., 2004, 396:252.
[111] Vinu A, Miyahara M, Mori T, Ariga K. J. Porous Mater., 2006, 13:379.
[112] Ariga K, Vinu A, Miyahara M, Hill J P, Mori T. J. Am. Chem. Soc., 2007, 129:11022.
[113] Vinu A, Hossain K Z, Kumar G S, Ariga K. Carbon, 2006, 44:530.
[114] Zhuang X, Wan Y, Feng C M, Shen Y, Zhao D Y. Chem. Mater., 2009, 21:706.
[115] Guo L M, Zhang L X, Zhang J M, Zhou J, He Q J, Zeng S Z, Cui X Z, Shi J L. Chem. Commun., 2009, 6071.
[116] Valle-Vigoón P, Sevilla M, Fuertes A B. Chem. Mater., 2010, 22:2526.
[117] Vinu A, Streb C, Murugesan V, Hartmann M. J. Phys. Chem. B, 2003, 107:8297.
[118] Fang B Z, Kim J H, Lee C, Yu J S. J. Phys. Chem. C, 2008, 112:639.
[119] Carriazo D, Picó F, Gutiérrez M C, Rubio F, Rojoa J M, Monte F. J. Mater. Chem., 2010, 20:773.
[120] Ren T Z, Liu L, Zhang Y Y, Yuan Z Y. J. Solid State Electrochem., 2013, 17:927.
[121] Ren T Z, Liu L, Zhang Y Y, Yuan Z Y. J. Solid State Electrochem, 2013, 17:2223.
[122] Fan J, Wang T, Yu C Z, Tu B, Jiang Z, Zhao D Y. Adv. Mater., 2004, 16:1432.
[123] Zhang Y H, Wang A Q, Zhang T. Chem. Commun., 2010, 46:862.
[124] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew. Chem. Int. Ed., 2011, 50:3318.
[125] Su D S, Delgado J, Liu X, Wang D, Schlögl R, Wang L, Zhang Z, Shan Z, Xiao F S. Chem. Asian J., 2009, 4:1108.
[126] Wang L F, Zhang J, Su D S, Ji Y Y, Cao X J, Xiao F S. Chem. Mater., 2007, 19:2894.
[127] Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Chem. Commun., 2011, 47:8334.
[128] Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. Catal. Commun., 2011, 16:81.
[129] Liu L, Deng Q F, Agula B, Ren T Z, Liu Y P, Zhaorigetu B, Yuan Z Y. Catal. Today, 2012, 186:35.
[130] Ma T Y, Liu L, Yuan Z Y. Chem. Soc. Rev., 2013, 42:3977.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[8] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[9] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[10] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[11] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[12] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[13] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[14] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[15] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.