中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 706-726 DOI: 10.7536/PC131051 Previous Articles   Next Articles

• Review •

Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application

Yang Yong*, Dou Dandan   

  1. Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91227105), the Natural Science Foundation of Zhejiang Province, China (No. LY12B02021), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Education), Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (No. ZYG2011001), and 521 Talent Program of Zhejiang Sci-Tech University.

PDF ( 4765 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen bonding is a kind of noncovalent interaction that holds a very important position in the field of supramolecular chemistry. In the past few years, hydrogen bonding mediated supramolecular polymer has become a hot research topic in supramolecular chemistry. The construction of excellent hydrogen bonding building blocks lies the basis for the area. Among that, triply and quadruply hydrogen bonded systems are widely used for the construction of supramolecular assemblies. In this article, we summarize the progress and applications of triply and quadruply hydrogen bonded systems. We put our emphasis on the design principles of such systems and the factors affecting the stability of each system.

Contents
1 Introduction
2 Triply hydrogen bonded systems and their
applications
2.1 ADA·DAD triply hydrogen bonded systems
2.2 DDA·AAD triply hydrogen bonded systems
2.3 DDD·AAA triply hydrogen bonded systems
3 Quadruply hydrogen bonded systems and their applications
3.1 Quadruply hydrogen bonded systems of separated hydrogen bonding building blocks
3.2 Self-complementary quadruply hydrogen bonded system with DADA·ADAD hydrogen bonding sites
3.3 Self-complementary quadruply hydrogen bonded system with DDAA·AADD hydrogen bonding sites
3.4 Complementary quadruply hydrogen bonded system with DAAD·ADDA hydrogen bonding sites
3.5 Quadruply hydrogen bonded system with AAAA·DDDD hydrogen bonding sites
3.6 Quadruply hydrogen-bonded molecular duplexes free of secondary electrostatic interactions
3.7 Other quadruply hydrogen bonded systems
4 Conclusion and outlook

CLC Number: 

[1] Steed J W, Atwood J L. Supramolecular Chemistry. 2nd ed. NY: John Wiley-Sons Ltd., 2008.
[2] Prins L J, Reinhoudt D N, Timmerman P. Angew. Chem. Int. Ed., 2001, 40: 2382.
[3] Jorgensen W L, Pranata J. J. Am. Chem. Soc., 1990, 112: 2008.
[4] Pranata J, Wierschke S G, Jorgensen W L. J. Am. Chem. Soc., 1991, 113: 2810.
[5] Murray T J, Zimmerman S C. J. Am. Chem. Soc., 1992, 114: 4010.
[6] Zimmerman S C, Murray T J. Tetrahedron Lett., 1994, 35: 4077.
[7] Sartorius J, Schneider H J. Chem. Eur. J., 1996, 2: 1446.
[8] Sijbesma R P, Meijer E W. Chem. Commun., 2003, 5.
[9] Zimmerman S C, Corbin P S. in Structure and Bonding (Berlin), 2000, 96: 63.
[10] 黄飞鹤(Huang F H), 翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J). 超分子聚合物(Supramolecular Polymers). 杭州: 浙江大学出版社(Hangzhou: Zhejiang University Press), 2012.
[11] Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41: 6042.
[12] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41: 1621.
[13] De Greef T F A, Meijer E W. Nature, 2008, 453: 171.
[14] De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687.
[15] Aida T, Meijer E W, Stupp S I. Science, 2012, 335: 813.
[16] Yang S K, Zimmerman S C. Isr. J. Chem., 2013, 53: 511.
[17] Feibush B, Figueroa A, Charles R, Onan K D, Feibush P, Karger B L. J. Am. Chem. Soc., 1986, 108: 3310.
[18] Hamilton A D, van Engen D. J. Am. Chem. Soc., 1987, 109: 5035.
[19] Kyogoku Y, Lord R C, Rich A. Proc. Natl. Acad. Sci. U. S. A., 1967, 57: 250.
[20] Park T K, Schroeder J, Rebek J. J. Am. Chem. Soc., 1991, 113: 5125.
[21] Kelly T R, Bridger G J, Zhao C. J. Am. Chem. Soc., 1990, 112: 8024.
[22] Beijer F H, Sijbesma R P, Vekemans J A J M, Meijer E W, Kooijman H, Spek A L. J. Org. Chem., 1996, 61: 6371.
[23] Fouquey C, Lehn J M, Levelut A M. Adv. Mater., 1990, 2: 254.
[24] Lehn J M. Makromol. Chem. Macromol. Symp., 1993, 69: 1.
[25] Gulik-Krzywicki T, Fouquey C, Lehn J M. Proc. Natl. Acad. Sci. U. S. A., 1993, 90: 163.
[26] Kotera M, Lehn J M, Vigneron J P. J. Chem. Soc. Chem. Commun., 1994, 2: 197.
[27] Kotera M, Lehn J M, Vigneron J P. Tetrahedron, 1995, 51: 1953.
[28] Chang S K, Hamilton A D. J. Am. Chem. Soc., 1988, 110: 1318.
[29] Chang S K, Ungen D V, Hamilton A D. J. Am. Chem. Soc., 1991, 113: 7640.
[30] Kelly T R, Zhao C, Bridger G J. J. Am. Chem. Soc., 1989, 111: 3744.
[31] Hisamatsu Y, Fukumi Y, Shirai N, Ikeda S I, Odashima K. Tetrahedron Lett., 2008, 49: 2005.
[32] McGhee A M, Kilner C, Wilson A J. Chem. Commun., 2008, 344.
[33] Gooch A, McGhee A M, Pellizzaro M L, Lindsay C I, Wilson A J. Org. Lett., 2011, 13: 240.
[34] Gooch A, Barrett S, Fisher J, Lindsay C I, Wilson A J. Org. Biomol. Chem., 2011, 9: 5938.
[35] Murray T J, Zimmerman S C, Kolotuchin S V. Tetrahedron Lett., 1995, 51: 635.
[36] Bell D A, Anslyn E V. Tetrahedron Lett., 1995, 51: 7161.
[37] Djurdjevic S, Leigh D A, McNab H, Parsons S, Teobaldi G, Zerbetto F. J. Am. Chem. Soc., 2007, 129: 476.
[38] Blight B A, Camara-Campos A, Djurdjevic S, Kaller M, Leigh D A, McMillan F M, McNab H, Slawin A M Z. J. Am. Chem. Soc., 2009, 131: 14116.
[39] Wang H B, Mudraboyina B P, Li J X, Wisner J A. Chem. Commun., 2010, 46: 7343.
[40] Wang H B, Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 1322.
[41] 齐志奇(Qi Z Q), 邵学斌(Shao X B), 赵新(Zhao X), 李晓强(Li X Q), 王晓钟(Wang X Z), 张未星(Zhang W X), 蒋锡夔(Jiang X K), 黎占亭(Li Z T). 有机化学(Organic Chemistry), 2003, 5: 403.
[42] Ducharme Y, Wuest J D. J. Org. Chem., 1988, 53: 5787.
[43] Wash P L, Maverick E, Chiefari J, Lightner D A. J. Am. Chem. Soc., 1997, 119: 3802.
[44] Griffin R J, Lowe P R. J. Chem. Soc. Perkin Trans. 1, 1992: 1811.
[45] Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W. Angew. Chem. Int. Ed., 1998, 37: 75.
[46] Hirschberg J H K K, Brunsveld L, Ramzi A, Vekemans J A J M, Sijbesma R P, Meijer E W. Nature, 2000, 407: 167.
[47] Brunsveld L, Vekemans J A J M, Hirschberg J H K K, Sijbesma R P, Meijer E W. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 4977.
[48] Yang Y, Yan H J, Chen C F, Wan L J. Org. Lett., 2007, 9: 4991.
[49] Martin A M, Butler R S, Ghiviriga I, Giessert R E, Abboud K A, Castellano R K. Chem. Commun, 2006, 42: 4413.
[50] Li J, Wisner J A, Jennings M C. Org. Lett., 2007, 9: 3267.
[51] Li J, Pandelieva A T, Rowley C N, Woo T K, Wisner J A. Org. Lett., 2012, 14: 5772.
[52] Taylor A, Berryman V E J, Boyd R J. J. Phys. Chem. A, 2012, 116: 7965.
[53] Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Meijer E W. Science, 1997, 278: 1601.
[54] Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W. J. Am. Chem. Soc., 1998, 120: 6761.
[55] Keizer H M, Sijbesma R P, Meijer E W. Eur. J. Org., 2004, 12: 2553.
[56] Soentjens S H M, Sijbesma R P, van Genderen M H P, Meijer E W. J. Am. Chem. Soc., 2000, 122: 7487.
[57] Ikegami M, Arai T. Chem. Lett., 2001, 7: 694.
[58] Ohshiro I, Ikegami M, Nishimura Y, Arai T. Bull. Chem. Soc. Jpn., 2006, 79: 1950.
[59] Guo D, Sijbesma R P, Zuilhof H. Org. Lett., 2004, 6: 3667.
[60] Wang X Z, Li X Q, Shao X B, Zhao X, Deng P, Jiang X K, Li Z T, Chen Y Q. Chem. Eur. J., 2003, 9: 2904.
[61] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Am. Chem. Soc., 2005, 127: 810.
[62] Wang S, Wu L, Zhang L, Tung C. Chin. Sci. Bull., 2006, 51: 129.
[63] Sánchez L, Martín N, Guldi D M. Angew. Chem. Int. Ed., 2005, 44: 5374.
[64] Rispens M T, Sanchez L, Knol J, Hummelen J C. Chem. Commun., 2001, 2: 161.
[65] Gonzalez J J, Gonzalez S, de Mendoza J, Priego E M, Martin N, Luo C P, Guldi D M. Chem. Commun., 2001, 163.
[66] Sánchez L, Rispens M T, Hummelen J C. Angew. Chem. Int. Ed., 2002, 41: 838.
[67] Xu J F, Chen Y Z, Wu D Y, Wu L Z, Tung C H, Yang Q Z. Angew. Chem. Int. Ed., 2013, 52: 9738.
[68] Yan X, Li S, Pollock J B, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 15585.
[69] Yan X, Jiang B, Cook T R, Zhang Y, Li J, Yu Y, Huang F, Yang H B, Stang P J. J. Am. Chem. Soc., 2013, 135: 16813.
[70] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 1998, 120: 9710.
[71] Corbin P S, Lawless L J, Li Z T, Ma Y G, Witmer M J, Zimmerman S C. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 5099.
[72] Baruah P K, Gonnade R, Phalgune U D, Sanjayan G J. J. Org. Chem., 2005, 70: 6461.
[73] Sun H, Steeb J, Kaifer A E. J. Am. Chem. Soc., 2006, 128: 2820.
[74] Cui L, Gadde S, Shukla A D, Sun H, Mague J T, Kaifer A E. Chem. Commun., 2008, 1446.
[75] Lafitte V G H, Aliev A E, Horton P N, Hursthouse M B, Bala K, Golding P, Hailes H C. J. Am. Chem. Soc., 2006, 128: 6544.
[76] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 2000, 122: 3779.
[77] Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J. J. Am. Chem. Soc., 2001, 123: 10475.
[78] Chien C H, Leung M M, Su J K, Li G H, Liu Y H, Wang Y. J. Org. Chem., 2004, 69: 1866.
[79] Hisamatsu Y, Shirai N, Ikeda S I, Odashima K. Org. Lett., 2009, 11: 4342.
[80] Prabhakaran P, Puranik V G, Sanjayan G J. J. Org. Chem., 2005, 70: 10067.
[81] Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 14157.
[82] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Org. Chem., 2006, 71: 375.
[83] Anderson C A, Taylor P G, Zeller M A, Zimmerman S C. J. Org. Chem., 2010, 75: 4848
[84] Park T, Zimmerman S C, Nakashima S. J. Am. Chem. Soc., 2005, 127: 6520.
[85] Park T, Todd E M, Nakashima S, Zimmerman S C. J. Am. Chem. Soc., 2005, 127: 18133.
[86] Ong H C, Zimmerman S C. Org. Lett., 2006, 8: 1589.
[87] Kuykendall D W, Anderson C A, Zimmerman S C. Org. Lett., 2009, 11: 61.
[88] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 11582.
[89] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 13986.
[90] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 14236.
[91] Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C. J. Am. Chem. Soc., 2013, 135: 7288.
[92] Zhang Y, Anderson C A, Zimmerman S C. Org. Lett., 2013, 15: 3506.
[93] Li Y, Park T, Quansah J K, Zimmerman S C. J. Am. Chem. Soc., 2011, 133: 17118.
[94] Lüning U, Kühl C. Tetrahedron Lett., 1998, 39: 5735.
[95] Brammer S, Lüning U, Kühl C. Eur. J. Org. Chem., 2002, 23: 4054.
[96] Lüning U, Kühl C, Uphoff A. Eur. J. Org. Chem., 2002, 23: 4063.
[97] Taubitz J, Lüning U, Grotemeyer J. Chem. Commun., 2004, 2400.
[98] Quinn J R, Zimmerman S C. Org. Lett., 2004, 6: 1649.
[99] Hisamatsu Y, Shirai N, Ikeda S I. Odashima K. Org. Lett., 2010, 12: 1776.
[100] Pellizzaro M L, Barrett S A, Fisher J, Wilson A J. Org. Biomol. Chem., 2012, 10: 4899.
[101] Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J. J. Am. Chem. Soc., 2003, 125: 15128.
[102] Zhou Y X, Zhao X, Li Z T, Chen G J, Liu R Z. Acta Chim. Sin., 2003, 61: 963.
[103] Feng D J, Wang P, Li X Q, Li Z T. Chin. J. Chem., 2006, 24: 1200.
[104] Yang Y, Yang Z Y, Yi Y P, Xiang J F, Chen C F, Wan L J, Shuai Z G. J. Org. Chem., 2007, 72: 4936.
[105] Taubitz J, Lüning U. Aust. J. Chem., 2009, 62: 1550.
[106] Blight B A, Hunter C A, Leigh D A, McNab H, Thomson P I T. Nat. Chem., 2011, 3: 244.
[107] Wilson A. Nat. Chem., 2011, 3: 193.
[108] Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T. J. Am. Chem. Soc., 2013, 135: 9939.
[109] Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim Y W, Zhu J, Ickes H. J. Am. Chem. Soc., 1999, 121: 5607.
[110] Yang X W, Martinovic S, Smith R D, Gong B. J. Am. Chem. Soc., 2003, 125: 9932.
[111] Yang X, Gong B. Angew. Chem. Int. Ed., 2005, 44: 1352.
[112] Roland J T, Guan Z. J. Am. Chem. Soc., 2004, 126: 14328.
[113] Zhang P, Chu H Z, Li X H, Feng W, Deng P C, Yuan L, Gong B. Org. Lett., 2011, 13: 54.
[114] Davis A P, Draper S M, Dunne G, Ashton P. Chem. Comm., 1999, 2265.
[115] Schmuck C, Wienand W. J. Am. Chem. Soc., 2003, 125: 452.P, Hailes H C. J. Am. Chem. Soc., 2006, 128: 6544-6545.
[76] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 2000, 122: 3779-3780
[77] Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J. J. Am. Chem. Soc., 2001, 123: 10475-10488
[78] Chien C-H, Leung M-k, Su J-K, Li G-H, Liu Y-H, Wang Y. J. Org. Chem., 2004, 69: 1866-1871
[79] Hisamatsu Y, Shirai N, Ikeda S I, Odashima K. Org. Lett., 2009, 11: 4342-4345
[80] Prabhakaran P, Puranik V G, Sanjayan G J. J. Org. Chem., 2005, 70: 10067-10072
[81] Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 14157-14164
[82] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Org. Chem., 2006, 71: 375-378
[83] Anderson C A, Taylor P G, Zeller M A, Zimmerman S C. J. Org. Chem., 2010, 75: 4848-4851
[84] Park T, Zimmerman S C, Nakashima S. J. Am. Chem. Soc., 2005, 127: 6520-6521
[85] Park T, Todd E M, Nakashima S, Zimmerman S C. J. Am. Chem. Soc., 2005, 127: 18133-18142
[86] Ong H C, Zimmerman S C. Org. Lett., 2006, 8: 1589-1592
[87] Kuykendall D W, Anderson C A, Zimmerman S C. Org. Lett., 2009, 11: 61-64
[88] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 11582-11590
[89] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 13986-13987
[90] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 14236-14237
[91] Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R., Zimmerman S C. J. Am. Chem. Soc., 2013, 135: 7288-7295
[92] Zhang Y, Anderson C A, Zimmerman S C. Org. Lett., 2013, 15: 3506-3509
[93] Li Y, Park T, Quansah J K, Zimmerman S C. J. Am. Chem. Soc., 2011, 133: 17118-17121
[94] Lüning U, Kühl C. Tetrahedron Lett., 1998, 39: 5735-5738
[95] Brammer S, Lüning U, Kühl C. Eur. J. Org. Chem., 2002, 23: 4054-4062
[96] Lüning U, Kühl C, Uphoff A. Eur. J. Org. Chem., 2002, 23: 4063-4070
[97] Taubitz J, Lüning U, Grotemeyer J. Chem. Commun., 2004,21: 2400–2401
[98] Quinn J R, Zimmerman S C. Org. Lett., 2004, 6: 1649-1652
[99] Hisamatsu Y, Shirai N, Ikeda S I. Odashima K. Org. Lett., 2010, 12: 1776-1779
[100] Pellizzaro M L, Barrett S A, Fisher J, Wilson A J. Org. Biomol. Chem., 2012, 10: 4899-4906
[101] Zhao X, Wang X Z, Jiang X-K, Chen Y-Q, Li Z T, Chen G-Ju. J. Am. Chem. Soc., 2003, 125: 15128-15139
[102] Zhou Y X, Zhao X, Li Z T, Chen G-J, Liu R-Z. Acta Chim. Sin., 2003, 61: 963-969
[103] Feng D-J, Wang P, Li X-Q, Li Z T. Chin. J. Chem., 2006, 24: 1200-1208
[104] Yang Y, Yang Z-Y, Yi Y-P, Xiang J-F, Chen C-F, Wan L-J, Shuai Z-G. J. Org. Chem., 2007, 72: 4936-4946
[105] Taubitz J, Lüning U. Aust. J. Chem., 2009, 62: 1550-1555
[106] Blight B A, Hunter C A, Leigh D A, McNab H, Thomson P I T. Nature Chem., 2011, 3: 244-248
[107] Wilson A. Nature Chem., 2011, 3: 193-194
[108] Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T. J. Am. Chem. Soc., 2013, 135: 9939-9943
[109] Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim, Y W, Zhu J, Ickes H. J. Am. Chem. Soc., 1999, 121: 5607-5608
[110] Yang X W, Martinovic S, Smith R D, Gong B. J. Am. Chem. Soc., 2003, 125: 9932-9933
[111] Yang X, Gong B. Angew. Chem., Int. Ed., 2005, 44: 1352-1356
[112] Roland J T, Guan Z. J. Am. Chem. Soc., 2004, 126: 14328-14329
[113] Zhang P, Chu H-Z, Li X-H, Feng W, Deng P-C,Yuan L, Gong B. Org. Lett., 2011, 13: 54-57
[114] Davis A P, Draper S M, Dunne G, Ashton P. Chem. Comm., 1999, 22: 2265-2266
[115] Schmuck C, Wienand W. J. Am. Chem. Soc., 2003, 125: 452-459

 

[1] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[2] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[3] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[4] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[5] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[6] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[7] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[8] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[9] Xu Liang, Li Yongjun, Li Yuliang. Preparation and Application of Supramolecular Functional Materials Based on π System [J]. Progress in Chemistry, 2014, 26(04): 487-501.
[10] Wang Sai, Wu Bin, Duan Junfei, Fang Jianglin*, Chen Dongzhong. Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators [J]. Progress in Chemistry, 2014, 26(01): 125-139.
[11] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[12] Huang Cuiying, Li Yang, Wang Changsheng. Accurate and Rapid Calculation of the Hydrogen Bond Strengths and Hydrogen Bonding Potential Energy Curves for the Hydrogen-Bonded Complexes Containing Peptide Amides and/or Nucleic Acid Bases [J]. Progress in Chemistry, 2012, 24(06): 1214-1226.
[13] Liu Zhicheng, Wang Hong, Yang Rui, Li Wei. Synthesis and Application of Phosphorous-Containing Calixarenes and Their Complexes [J]. Progress in Chemistry, 2011, 23(8): 1665-1682.
[14] Shen Xinghai, Zhang Jingjing, Gao Song, Fu Suzhen, Sun Taoxiang, Fu Jing, Zhang Hongjuan, Chen Qingde, Gao Hongcheng. Applications of Typical Supramolecular Systems in the Field of Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1386-1399.
[15] Cao Jing, Jiang Yi, Chen Chuan-Feng. Advances on Synthesis and Applications of Iptycenes and Their Derivatives [J]. Progress in Chemistry, 2011, 23(11): 2200-2214.