中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 846-855 DOI: 10.7536/PC131035 Previous Articles   Next Articles

• Review •

Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold

Li Zhiguo*, Zhang Lingling   

  1. School of Chemistry Science and Technology, Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21205105), Guangdong Natural Science Foundation (No. S2012040007348) and Doctoral Special Foundation of Zhanjiang Normal University (No. ZL1103)

PDF ( 3257 ) Cited
Export

EndNote

Ris

BibTeX

Thiol-modified DNA self-assembled monolayers (SAMs) on gold is the ideal heterogeneous system for studying DNA charge transfer through DNA duplex, designing DNA sensor with high sensitivity and identifying single base mismatch etc. The performance of DNA SAMs on gold is related to three aspects: gold surface conditions, DNA characteristics and surroundings. Gold surface conditions mainly include substrate configuration by different surface pretreatment, gold shapes, substrate potential and substrate temperature; DNA characteristics include the difference of double-stranded and single-stranded DNA, DNA base types, types for thiols modification and factors related to DNA electron transfer; Surroundings mainly include ionic strength or types of cations, ambient medium, temperature in solution and types of mixed thiols. These factors influence surface density and conformation of DNA SAMs on gold, which determine its charge transfer or hybridization performance. In order to controllably construct DNA SAMs with the optimal performance for satisfying different researches about DNA, it is very necessary to understand the effect of different factors on the performance of DNA SAMs on gold. In this article we review the research progress of influence factors on the performance of DNA SAMs on gold from three aspects including gold surface conditions, DNA characteristics and surroundings.

Contents
1 Introduction
2 Gold surface conditions
2.1 Surface pretreatment
2.2 Gold substrate shapes
2.3 Gold substrate potential
2.4 Gold substrate temperature
3 DNA characteristics
3.1 Double-stranded and single-stranded DNA
3.2 DNA base types
3.3 Types for thiols modification
3.4 Factors related to DNA electron transfer
4 Surroundings
4.1 Ionic strength and types of cations
4.2 Ambient medium
4.3 Temperature in solution
4.4 Types of mixed thiols
5 outlook

CLC Number: 

[1] 雷丽红(Lei L H), 傅迎春(Fu Y C), 徐霞红 (Xu X H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemistry), 2009, 21(4): 724.
[2] 李志果(Li Z G), 纪鸣(Ji M), 程炯佳(Cheng J J), 王新莹(Wang X Y), 陆晓杰(Lu X J), 安娜(An N), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2012, 28(4): 567.
[3] 张炯(Zhang J), 万莹(Wan Y), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2007, 19(10): 1576.
[4] Sontz P A, Muren N B, Barton J K. Acc. Chem. Res., 2012, 45: 1792.
[5] Teles F R R, Fonseca L P. Talanta, 2008, 77: 606.
[6] Muren N B, Olmona E D, Barton J K. Phys. Chem. Chem. Phys., 2012, 14: 13754.
[7] Olmon E D, Sontz P A, Blanco-Rodriguez A M, Towrie M, Clark I P, Vicek A Jr., Barton J K. J. Am. Chem. Soc., 2011, 133: 13718.
[8] Wohlgamuth C H, McWilliams M A, Slinker J D. Anal. Chem., 2013, 85: 1462.
[9] Mie Y, Kowata K, Kojima N, Komatsu Y. Langmuir, 2012, 28: 17211.
[10] Anne A, Demaille C. J. Am. Chem. Soc., 2008, 130: 9812.
[11] Wang K, Goyer C, Anne A, Demaille C. J. Phys. Chem. B, 2007, 111: 6051.
[12] Gong P, Levicky R. Proc. Natl. Acad. Sci. USA, 2008, 105: 5301.
[13] Arinaga K, Rant U, Knezevic J, Pringsheim E, Tornow M, Fujita S, Abstreiter G, Yokoyama N. Biosens. Bioelectron., 2007, 23: 326.
[14] 李志果(Li Z G), 戴建远(Dai J Y), 史艳青(Shi Y Q), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2012, 28(2): 273.
[15] Feng G Y, Niu T X, You X Y, Wan Z W, Kong Q C, Bi S P. Analyst, 2011, 136: 5058.
[16] Tkac J, Davis J J. J. Electroanal. Chem., 2008, 621: 117.
[17] Carvalhal R F, Freire R S, Kubota L T. Electroanalysis, 2005, 17: 1251.
[18] Hoogvliet J C, Dijksma M, Kamp B, van Bennekom W P. Anal. Chem., 2000, 72: 2016.
[19] Thomas J P, Zhao L Y, Ding K J, Heinig N F, Leung K T. ACS Appl. Mater. Interfaces, 2012, 4: 5945.
[20] Li F, Han X P, Liu S F. Biosens. Bioelectron., 2011, 26: 2619.
[21] Liu S F, Liu J, Han X P, Cui Y N, Wang W. Biosens. Bioelectron., 2010, 25: 1640.
[22] Li Y, Qi H L, Yang J, Zhang C X. Microchim. Acta, 2009, 164: 69.
[23] Li A X, Yang F, Ma Y, Yang X R. Biosens. Bioelectron., 2007, 22: 1716.
[24] 王辉(Wang H), 李延(Li Y), 漆红兰(Qi H L), 张成孝(Zhang C X). 陕西师范大学学报(Journal of Shaanxi Normal University), 2006, 34(4): 69.
[25] 杨婕(Yang J), 杨涛(Yang T), 马瑶(Ma Y), 焦奎(Jiao K). 化学研究与应用(Chemical Research and Application), 2007, 19(3): 233.
[26] 董晓娅(Dong X Y), 赵伟伟(Zhao W W), 孙国宝(Sun G B), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 化学学报(Acta Chimica Sinica), 2012, 70(13): 1457.
[27] Hansen A G, Salvatore P, Karlsen K K, Nichols R J, Wengel J, Ulstrup J. Phys. Chem. Chem. Phys., 2013, 15: 776.
[28] Salvatore P, Zeng D D, Karlsen K K, Chi Q J, Wengel J, Ulstrup J. ChemPhysChem, 2013, 14: 2101.
[29] Ohshiro T, Maeda M. Chem. Commun., 2010, 46: 2581.
[30] Ehlich R, Horber J K H. Ultramicroscopy, 2009, 109: 1074.
[31] 梁金玲(Liang J L), 周剑章(Zhou J Z), 陈巧琳(Chen Q L), 林玲玲(Lin L L), 林仲华(Lin Z H). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23(9): 1421.
[32] 王青(Wang Q), 王柯敏(Wang K M), 羊小海(Yang X H), 莫远尧(Mo Y Y), 黄杉生(Huang S S), 李杜(Li D). 湖南大学学报(Journal of Hunan University), 2003, 30(1): 1.
[33] 董丽琴(Dong L Q), 周剑章(Zhou J Z), 吴玲玲(Wu L L), 董平(Dong P), 林仲华(Lin Z H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(12): 2303.
[34] Yang X H, Wang Q, Wang K M, Tan W H, Yao J, Li H M. Langmuir, 2006, 22: 5654.
[35] Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Nano Lett., 2004, 4: 2441.
[36] Kaiser W, Rant U. J. Am. Chem. Soc., 2010, 132: 7935.
[37] Rant U, Arinaga K, Tornow M, Kim Y W, Netz R R, Fujita S, Yokoyama N, Abstreiter G. Biophys. J., 2006, 90: 3666.
[38] Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Org. Biomol. Chem., 2006, 4: 3448.
[39] Josephs E A, Ye T. Nano Lett., 2012, 12: 5255.
[40] Ceres D M, Barton J K. J. Am. Chem. Soc., 2003, 125: 14964.
[41] Josephs E A, Ye T. J. Am. Chem. Soc., 2012, 134: 10021.
[42] Kelley S O, Barton J K, Jackson N M, McPherson L D, Potter A B, Spain E M, Allen M J, Hill M G. Langmuir, 1998, 14: 6781.
[43] Heaton R J, Peterson A W, Georgiadis R M. Proc. Natl. Acad. Sci. USA, 2001, 98: 3701.
[44] Rant U, Pringsheim E, Kaiser W, Arinaga K, Knezevic J, Tornow M, Fujita S, Yokoyama N, Abstreiter G. Nano Lett., 2009, 9: 1290.
[45] Rant U, Arinaga K, Scherer S, Pringsheim E, Fujita S, Yokoyama N, Tornow M, Abstreiter G. Proc. Natl. Acad. Sci. USA, 2007, 104: 17364.
[46] Arinaga K, Rant U, Tornow M, Fujita S, Abstreiter G, Yokoyama N. Langmuir, 2006, 22: 5560.
[47] Wong I Y, Melosh N A. Nano Lett., 2009, 9: 3521.
[48] Cao S H, Xie T T, Cai W P, Liu Q, Li Y Q. J. Am. Chem. Soc., 2011, 133: 1787.
[49] Johnson R P, Gale N, Richardson J A, Brown T, Bartlett P N. Chem. Sci., 2013, 4: 1625.
[50] Johnson R P, Gao R, Brown T, Bartlett P N. Bioelectrochemistry, 2012, 85: 7.
[51] Flechsig G U, Peter J, Hartwich G, Wang J, Grundler P. Langmuir, 2005, 21: 7848.
[52] Peter J, Reske T, Flechsig G U. Electroanalysis, 2007, 19: 1356.
[53] Walter A, Surkus A E, Flechsig G U. Anal. Bioanal. Chem., 2013, 405: 3907.
[54] Li Z G, Niu T X, Zhang Z J, Chen R, Feng G Y, Bi S P. Analyst, 2011, 136: 2090.
[55] Li Z G, Niu T X, Zhang Z J, Chen R, Feng G Y, Bi S P. Biosens. Bioelectron., 2011, 26: 4564.
[56] Tinland B, Pluen A, Sturm J, Weill G. Macromolecules, 1997, 30: 5763.
[57] Steel A B, Levicky R L, Herne T M, Tarlov M J. Biophys. J., 2000, 79: 975.
[58] Petrovykh D Y, Perez-Dieste V, Opdahl A, Kimura-Suda H, Sullivan J M, Tarlov M J, Himpsel F J, Whitman L J. J. Am. Chem. Soc., 2006, 128: 2.
[59] Barhoumi A, Zhang D M, Halas N J. J. Am. Chem. Soc., 2008, 130: 14040.
[60] Yao L Q, Sullivan J, Hower J, He Y, Jiang S Y. J. Chem. Phys., 2007, 127: 195101.
[61] Petrovykh D Y, Kimura-Suda H, Whitman L J, Tarlov M J. J. Am. Chem. Soc., 2003, 17: 5219.
[62] Mourougou-Candoni N, Naud C, Thibaudau F. Langmuir, 2003, 19: 682.
[63] Cardenas M, Barauskas J, Schillen K, Brennan J L, Brust M, Nylander T. Langmuir, 2006, 22: 3294.
[64] Wolf L K, Gao Y, Georgiadis R M. Langmuir, 2004, 20: 3357.
[65] Kimura-Suda H, Petrovykh D Y, Tarlov M J, Whitman L J. J. Am. Chem. Soc., 2003, 125: 9014.
[66] Sam M, Boon E M, Barton J K, Hill M G, Spain E M. Langmuir, 2001, 17: 5727.
[67] Farjami E, Campos R, Ferapontova E E. Langmuir, 2012, 28: 16218.
[68] Sakata T, Maruyama S, Ueda A, Otsuka H, Miyahara Y. Langmuir, 2007, 23: 2269.
[69] Day B S, Fiegland L R, Vint E S, Shen W Q, Morris J R, Norton M L. Langmuir, 2011, 27: 12434.
[70] O'Brien J C, Stickney J T, Porter M D. J. Am. Chem. Soc., 2000, 122: 5004.
[71] Ceres D M, Udit A K, Hill H D, Hill M G, Barton J K. J. Phys. Chem. B, 2007, 111: 663.
[72] Pheeney C G, Barton J K. J. Am. Chem. Soc., 2013, 135: 14944.
[73] Genereux J G, Barton J K. Chem. Rev., 2010, 110: 1642.
[74] Gorodetsky A A, Green O, Yavin E, Barton J K. Bioconjuate Chem., 2007, 18: 1434.
[75] Liu B, Bard A J, Li C Z, Kraatz H B. J. Phys. Chem. B, 2005, 109: 5193.
[76] Abi A, Ferapontova E E. J. Am. Chem. Soc., 2012, 134: 14499.
[77] Mie Y, Kojima N, Kowata K, Komatsu Y. Chem. Lett., 2012, 41: 62.
[78] Yu Y M, Heidel B, Parapugna T L, Wenderhold-Reeb S, Song B, Schçnherr H, Grininger M, Noll G. Angew. Chem. Int. Ed., 2013, 52: 4950.
[79] Farjami E, Clima L, Gothelf K V, Ferapontova E E. Analyst, 2010, 135: 1443.
[80] Wohlgamuth C H, McWilliams M A, Slinker J D. Anal. Chem., 2013, 85: 8634.
[81] Guo Q Q, Yue Q L, Zhao J J, Wang L, Wang H S, Wei X L, Liu J F, Jia J B. Chem. Commun., 2011, 47: 11906.
[82] Boon E M, Jackson N M, Wightman M D, Kelley S O, Hill M G, Barton J K. J. Phys. Chem. B, 2003, 107: 11805.
[83] Inouye M, Ikeda R, Takase M, Tsuri T, Chiba J. Proc. Natl. Acad. Sci. USA, 2005, 102: 11606.
[84] Slinker J D, Muren N B, Renfrew S E, Barton J K. Nat. Chem., 2011, 3: 228.
[85] Drummond T G, Hill M G, Barton J K. J. Am. Chem. Soc., 2004, 126: 15010.
[86] Liu T, Barton J K. J. Am. Chem. Soc., 2005, 127: 10160.
[87] Göhler B, Hamelbeck V, Markus T Z, Kettner M, Hanne G F, Vager Z, Naaman R, Zacharias H. Science, 2011, 331: 894.
[88] 陈霞(Chen X), 杨文胜(Yang W S), 靳健(Jin J), 徐力(Xu L), 杨百全(Yang B Q), 江林(Jiang L), 李铁津(Li T J), 陈曦(Chen X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2001, 22(7): 1228.
[89] 李安之(Li A Z), 丁玫(Ding M), 于海鹰(Yu H Y), 章江英(Zhang J Y). 物理化学学报(Acta Physico-Chimica Sinica), 1992, 8(2): 207.
[90] 沈鹤柏(Shen H B), 康玉专(Kang Y Z), 杨海峰(Yang H F), 郁林(Yu L), 章宗穰(Zhang Z R). 电化学(Electrochemistry), 1998, 11(4): 400.
[91] 王新莹(Wang X Y), 纪鸣(Ji M), 李志果(Li Z G), 陆晓杰(Lu X J), 程炯佳(Cheng J J), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2005, 21(5): 557.
[92] Castelino K, Kannan B, Majumdar A. Langmuir, 2005, 21: 1956.
[93] 徐 颖(Xu Y), 杨 琳(Yang L), 叶晓燕(Ye X Y), 何品刚(He P G), 方禹之(Fang Y Z). 华东师范大学学报(Journal of East China Normal University), 2006, 4: 39.
[94] Stachowiak J C, Yue M, Castelino K, Chakraborty A, Majumdar A. Langmuir, 2006, 22: 263.
[95] Li Z G, Niu T X, Zhang Z J, Feng G Y, Bi S P. Analyst, 2012, 137: 1680.
[96] Asanuma H, Noguchi H, Uosaki K, Yu H Z. J. Am. Chem. Soc., 2008, 130: 8016.
[97] Dinsmore M J, Lee J S. J. Inorg. Biochem., 2008, 102: 1599.
[98] Long Y T, Li C Z, Kraatz H B, Lee J S. Biophys. J., 2003, 84: 3218.
[99] Dinsmore M J, Lee J S. J. Electroanal. Chem., 2008, 617: 71.
[100] Li C Z, Long Y T, Kraatz H B, Lee J S. J. Phys. Chem. B, 2003, 107: 2291.
[101] Mizoguchi K, Tanaka S, Ogawa T, Shiobara N, Sakamoto H. Phys. Rev. B, 2005, 72: 033106.
[102] Legay G, Finot E, Meunier-Prest R, Cherkaoui-Malki M, Latruffe N, Dereux A. Biosens. Bioelectron., 2005, 21: 627.
[103] Howell C, Schmidt R, Kurz V, Koelsch P. Biointerphases, 2008, 3: 47.
[104] Yang W W, Lai R Y. Analyst, 2011, 136: 134.
[105] Pris A D, Ostrowski S G, Garaas S D. Langmuir, 2010, 26: 5655.
[106] Ge D B, Wang X, Williams K, Levicky R. Langmuir, 2012, 28: 8446.
[107] Kjallman T H M, Peng H, Soeller C, Travas-Sejdic J. Anal. Chem., 2008, 80: 9460.
[108] Goda T, Miyahara Y. Biosens. Bioelectron., 2011, 26: 3949.
[109] Mix M, Reske T, Duwensee H, Flechsig G U. Electroanalysis, 2009, 21: 826.
[110] 白燕(Bai Y), 戴小锋(Dai X F), 刘仲明(Liu Z M), 刘芳(Liu F), 马丽(Ma L). 传感器技术(Journal of Transducer Technology), 2005, 24(6): 23.
[111] Pheeney C G, Guerra L F, Barton J K. Proc. Natl. Acad. Sci. USA, 2012, 109: 11528.
[112] Herne T M, Tarlov M J. J. Am. Chem. Soc., 1997, 119: 8916.
[113] Dharuman V, Chang B Y, Park S M, Hahn J H. Biosens. Bioelectron., 2010, 25: 2129.
[114] Wu J, Campuzano S, Halford C, Haake D A, Wang J. Anal. Chem., 2010, 82: 8830.
[115] Zhang J, Lao R J, Song S P, Yan Z Y, Fan C H. Anal. Chem., 2008, 80: 9029.
[116] Dharuman V, Vijayaraj K, Radhakrishnan S, Dinakaran T, Narayanan J S, Bhuvana M, Wilson J. Electrochim. Acta, 2011, 56: 8147.
[117] Campuzano S, Kuralay F, Jesús Lobo-Castanón M, Bartosík M, Vyavahare K, Palecek E, Haake D A, Wang J. Biosens. Bioelectron., 2011, 26: 3577.
[118] Gebala M, Schuhmann W. ChemPhysChem, 2010, 11: 2887.
[119] Ferrario A, Scaramuzza M, Pasqualotto E, De Toni A, Paccagnella A. J. Electroanal. Chem., 2013, 689: 57.
[120] Kuralay F, Campuzano S, Wang J. Talanta, 2012, 99: 155.
[121] Henrya O Y F, Gutierrrez Pereza J, Sancheza J L A, O'Sullivan C K. Biosens. Bioelectron., 2010, 25: 978.
[122] Vikholm-Lundin I, Piskonen R. Sens. Actuators B, 2008, 134: 189.
[123] Satjapipat M, Sanedrin R, Zhou F M. Langmuir, 2001, 17: 7637.
[124] Abel G R, Josephs E A, Luong N, Ye T. J. Am. Chem. Soc., 2013, 135: 6399.
[125] Josephs E A, Ye T. ACS Nano, 2013, 7: 3653.
[126] Lou X H, Zhao T, Liu R, Ma J, Xiao Y. Anal. Chem., 2013, 85: 7574.

[1] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[2] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[3] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[4] Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao, Meiqin Zhang. Methods for Studying the Age Determination of Fingermarks [J]. Progress in Chemistry, 2019, 31(5): 654-666.
[5] Weina Fang, Shuang Lu, Lihua Wang, Chunhai Fan, Huajie Liu. Synthesis and Applications of Triangular Gold Nanoplates [J]. Progress in Chemistry, 2017, 29(5): 459-466.
[6] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[7] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[8] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[9] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[10] Tian Danbi, Zhang Wei, Tang Yan, Jiang Ling, Liu Jia, Hu Yi. Bioconjugate Probe for Enzyme Activity Based on the Gold Nanoparticles [J]. Progress in Chemistry, 2015, 27(2/3): 267-274.
[11] Zheng Yongpeng, Xu Jiaxi. Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry [J]. Progress in Chemistry, 2014, 26(09): 1471-1491.
[12] Rao Lu, Jiang Yanxia, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang. Electrocatalytic Oxidation of Ethanol [J]. Progress in Chemistry, 2014, 26(05): 727-736.
[13] Ma Wenchan, Zhou Qiao, Zhang Yuecheng, Zhao Jiquan. Direct and Oxidatively Dehydrogenative Coupling of Alcohols with Amines to Amides [J]. Progress in Chemistry, 2014, 26(0203): 334-344.
[14] Li Yang, Niu Junfeng, Zhang Chi, Wang Zhengzao, Zheng Mengyuan, Shang Enxiang. Photoinduced Toxic Mechanism of Metallic Nanoparticles toward Bacteria in Water [J]. Progress in Chemistry, 2014, 26(0203): 436-449.
[15] Dong Xu, Liu Xiaoyun, Zha Liusheng. Synthesis, Properties and Applications of Gold or Silver Nanoparticles Loaded Intelligent Hybrid Microgels [J]. Progress in Chemistry, 2013, 25(12): 2038-2052.