中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 866-878 DOI: 10.7536/PC131025 Previous Articles   Next Articles

• Review •

Fluorescent Probes for Reactive Nitrogen Species

Jing Xiaotong1,2, Yu Fabiao1, Chen Lingxin*1   

  1. 1. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
    2. College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21275158), the Innovation Projects of the Chinese Academy of Sciences (No. KZCX2-EW-206) and the 100 Talents Program of the Chinese Academy of Sciences

PDF ( 2100 ) Cited
Export

EndNote

Ris

BibTeX

It is generally established that the intracellular reactive nitrogen species (RNS) which contain nitrogen atoms are one class of highly chemical active species. These species have attracted increasing attention and become an active research field based on their key roles in special functions during a series of physiological and pathological processes. In order to elucidate these roles of RNS, the design and development technology for selective and sensitive detection to RNS in vivo are crucial. Advanced with high sensitivity, good selectivity, noninvasive detection and real-time visualization in situ, fluorescent probes provide facilitative and effective chemical approaches in modern biochemistry analysis. Progress in the field of fluorescent probes for RNS promises to advance our knowledge of essential cellular signal transduction during the varieties of physiological and pathological processes, which is indicated in human health and disease. According to the current situation, we review the past four years'latest five types of RNS probes for nitric oxide (NO), peroxynitrite (ONOO-), nitroxyl (HNO), nitrite (NO2-) and nitrogen dioxide (NO2). In this article, the design strategies, fluorescent response mechanisms and biological applications of the probes are discussed. Finally, the prospect to design and applications of probes is given.

Contents
1 Introduction
2 Fluorescent probes for NO
2.1 NO-induced o-phenylenediamine cyclization reaction
2.2 NO-induced spirocyclic opening reaction
2.3 NO-induced diazotization
2.4 Reaction between transition metal and NO
2.5 NO-induced denitrogenation reaction
3 Fluorescent probes for ONOO-
3.1 ONOO- probe based on mimicked selenoenzyme
3.2 ONOO- probe based on oxidized-borate reaction
3.3 ONOO- probe based on oxidative coupling reaction
3.4 ONOO- probes based on like-Baeyer-Villiger reaction
3.5 ONOO- probes based on other chemical reaction
4 Fluorescent probes for HNO
4.1 Fluorescent probe based on the reaction between Cu(Ⅱ) and HNO
4.2 HNO probes based on other chemical reaction
5 Fluorescent probes for NO2-
6 Fluorescent probes for NO2
7 Conclusion and outlook

CLC Number: 

[1] Cui S, Shi Y, Groffman P M, Schlesinger W H, Zhu Y G. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 2052.
[2] Bove P F, van der Vliet A. Free. Radic. Biol. Med., 2006, 41: 515.
[3] Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40: 4783.
[4] Chen X Q, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112: 1910.
[5] Nagano T. J. Clin. Biochem. Nutr., 2009, 45: 111.
[6] Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113: 192.
[7] Yuan L, Lin W Y, Zheng K B, He L W, Huang W M. Chem. Soc. Rev., 2013, 42: 622.
[8] Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4: 973.
[9] Boens N, Leena V, Dehaen W. Chem. Soc. Rev., 2012, 41: 1130.
[10] Gladwin M T, Crawford J H, Patel R P. Free Radic. Biol. Med., 2004, 36: 707.
[11] Prast H, Philippu A. Prog. Neurobiol., 2001, 64: 51.
[12] John W. Int. J. Immunopharmacol., 2001, 1: 1397.
[13] Nagano T, Yoshimura T. Chem. Rev., 2002, 102: 1235.
[14] Lim M H, Lippard S J. Acc. Chem. Res., 2007, 40: 41.
[15] Suzuki N, Kojima H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Biol. Chem., 2002, 277: 47.
[16] Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Hirata Y, Nagano T. Anal. Chem., 2001, 73: 1967.
[17] Gabe Y, Ueno T, Urano Y, Kojima H, Nagano T. Anal. Bioanal. Chem., 2006, 386: 621.
[18] Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Am. Chem. Soc., 2005, 127: 3684.
[19] Hirano T, Hiromoto K, Kagechika H. Org. Lett., 2007, 9: 1315.
[20] Hu J X, Yin L L, Xu K H, Gao J J, Tong L L, Tang B. Anal. Chim. Acta, 2008, 606: 57.
[21] Izumi S, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2009, 131: 10189.
[22] Galindo F, Kabir N, Gavrilovic J, Russell D A. Photochem. Photobiol. Sci., 2008, 7: 126.
[23] Zhang R, Ye Z Q, Wang G L, Zhang W Z, Yuan J L. Chem. Eur. J., 2010, 16: 6884.
[24] Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134: 17486.
[25] Chen J B, Zhang H X, Guo X F, Wang H, Zhang H S. Anal. Bioanal. Chem., 2013, 405: 7447.
[26] Vegesna G K, Sripathi S R, Zhang J, Zhu S, He W, Luo F T, Jahng W J, Frost M, Liu H. ACS Appl. Mater. Interfaces., 2013, 5: 4107.
[27] Lin L Y, Lin X Y, Lin F, Wong K T. Org. Lett., 2011, 13: 2216.
[28] Zhang R, Ye Z Q, Wang G L, Zhang W Z, Yuan J L. Chem. Eur. J., 2010, 16: 6884.
[29] Chen Y G, Guo W H, Ye Z Q, Wang G L, Yuan J L. Chem. Commun., 2011, 47: 6266.
[30] Terai T, Urano Y, Izumi S, Kojima H, Nagano T. Chem. Commun., 2012, 48: 2840.
[31] Seo E W, Han J H, Heo C H, Shin J H, Kim H M, Cho B R. Chem. Eur. J., 2012, 18: 12388.
[32] Yu C M, Wu Y L, Zeng F, Wu S Z. J. Mater. Chem. B, 2013, 33: 4152.
[33] Yuan L, Lin W Y, Xie Y N, Chen B, Zhu S S. J. Am. Chem. Soc., 2012, 134: 1305.
[34] Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Commun., 2011, 47: 9372.
[35] Yu H B, Zhang X F, Xiao Y, Zou W, Wang L P, Jin L J. Anal. Chem., 2013, 85: 7076.
[36] Sun C D, Shi W, Song Y C, Chen W, Ma H M. Chem. Commun., 2011, 47: 8638.
[37] Wu C M, Chen Y H, Dayananda K, Shiue T W, Hung C H, Liaw W F, Chen P Y, Wang Y M. Anal. Chim. Acta, 2011, 708: 141.
[38] Yang Y J, Seidlits S K, Adams M M, Lynch V M, Schmidt C E, Anslyn E V, Shear J B. J. Am. Chem. Soc., 2010, 132: 13114.
[39] Hilderbrand S A, Lippard S J. Inorg. Chem., 2004, 43: 5294.
[40] Soh N, Katayama Y, Maeda M. Analyst, 2001, 126: 564.
[41] Smith R C, Tennyson A G, Lippard S J. Inorg. Chem., 2006, 45: 6222.
[42] Lim M H, Lippard S J. Inorg. Chem., 2004, 43: 6366.
[43] (a) Lim M H, Wong B A, Pitcock W H Jr, Mokshagundam D, Baik M H, Lippard S J. J. Am. Chem. Soc., 2006, 128: 14364. (b) Lim M H, Xu D, Lippard S J. Nat. Chem. Biol., 2006, 2: 375.
[44] Pluth M D, McQuade L E, Lippard S J. Org. Lett., 2010, 12: 2318.
[45] Pluth M D, Chan M R, McQuade L E, Lippard S J. Inorg. Chem., 2011, 50: 9385.
[46] (a) McQuade L E, Lippard S J. Inorg. Chem., 2010, 49: 7464. (b) McQuade L E, Ma J, Lowe G, Ghatpande A, Gelperin A. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 8525.
[47] Hu X Y, Wang J, Zhu X, Dong D P, Zhang X L, Wu S, Duan C Y. Chem. Commun., 2011, 47: 11507.
[48] Hu X Y, Zhang X L, Song H L, He C, Bao Y M, Tang Q, Duan C Y. Tetrahedron, 2012, 68: 8371.
[49] Shiue T W, Chen Y H, Wu C M, Singh G, Chen H Y, Hung C H, Liaw W F, Wang Y M. Inorg. Chem., 2012, 51: 5400.
[50] Ferrer-Sueta G, Radi R. ACS Chem. Biol., 2009, 4: 161.
[51] Pacher P, Beckman J S, Liaudet L. Physiol. Rev., 2007, 87: 315.
[52] Surmeli N B, Litterman N K, Miller A F, Groves J T. J. Am. Chem. Soc., 2010, 132: 17174.
[53] Siddiqui M R, Komarova Y A, Vogel S M, Gao X, Bonini M G, Rajasingh J, Zhao Y Y, Brovkovych V, Malik A B. J. Cell. Biol., 2011, 193: 841.
[54] Kawasaki H, Ikeda K, Shigenaga A, Baba T, Takamori K, Ogawa H, Yamakura F. Free Radic. Biol., 2011, 50: 419.
[55] Sawa T, Zaki M H, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S, Ihara H, Kobayashi A, Yamamoto M, Fujii S, Arimoto H, Akaike T. Nat. Chem. Biol., 2007, 3: 727.
[56] Khoo N K H, Freeman B A. Curr. Opin. Pharmacol., 2010, 10:179.
[57] Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B. J. Immunol., 2010, 184: 1876.
[58] Ieda N, Nakagawa H, Peng T, Yang D, Suzuki T, Miyata N. J. Am. Chem. Soc., 2012, 134: 2563.
[59] Beckman J S, Beckman T W, Chen J, Marshall P A, Freeman B A. Proc. Natl. Acad. Sci. U. S. A., 1990, 87: 1620.
[60] Gryglewski R J, Palmer R M, Moncada S. Nature, 1986, 320: 454.
[61] Radi R, Peluffo G, Alvarez M N, Naviliat M, Cayota A. Free Radic. Biol. Med., 2001, 30: 463.
[62] Yu F B, Li P, Li G Y, Zhao G J, Chu T S, Han K L. J. Am. Chem. Soc., 2011, 33: 11030.
[63] Wang B S, Yu F B, Li P, Sun X F, Han K L. Dyes & Pigm., 2013, 96: 383.
[64] Xu K H, Chen H C, Tian J W, Ding B Y, Xie Y X, Qiang M M, Tang B. Chem. Commun., 2011, 47: 9468.
[65] Yu F B, Li P, Wang B S, Han K L. J. Am. Chem. Soc., 2013, 135: 7674.
[66] Zielonka J, Sikora A, Joseph J, Kalyanaraman B. J. Biol. Chem., 2010, 285: 14210.
[67] Yu F B, Song P, Li P, Wang B S, Han K L. Analyst, 2012, 137: 3740.
[68] Zhang Q J, Zhu Z C, Zheng Y L, Cheng J G, Zhang N, Long Y T, Zheng J, Qian X H, Yang Y J. J. Am. Chem. Soc., 2012, 134: 18479.
[69] Ma J J, Wu J S, Liu W M, Wang P F, Fan Z Y. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 94: 340.
[70] Yang D, Wang H L, Sun Z N, Chung N W, Shen J G. J. Am. Chem. Soc., 2006, 128: 6004.
[71] Sun Z N, Wang H L, Liu F Q, Chen Y, Tam P K, Yang D. Org. Lett., 2009, 11: 1887.
[72] Peng T, Yang D. Org. Lett., 2010, 12:4932.
[73] Lin W, Buccella D, Lippard S J. J. Am. Chem. Soc., 2013, 135: 13512.
[74] Lin K K, Wu S C, Hsu K M, Hung C H, Liaw W F, Wang Y M. Org. Lett., 2013, 15: 4242.
[75] Song C H, Ye Z Q, Wang G L, Yuan J L, Guan Y L. Chem. Eur. J., 2010, 16: 6464.
[76] Fukuto J M, Dutton A S, Houk K N. Chem. Bio. Chem., 2005, 6: 612.
[77] Irvine J C, Ritchie R H, Favaloro J L, Andrews K L, Widdop R E, Kemp-Harper B K. Trends Pharmacol. Sci., 2008, 29: 601.
[78] Murphy M E, Sies H. Proc. Natl. Acad. Sci. U.S.A., 1991, 88: 10860.
[79] Feelisch M. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 4978.
[80] Fukuto J M, Bartberger M D, Dutton A S, Paolocci N, Wink D A, Houk K N. Chem. Res. Toxicol., 2005, 18: 790.
[81] Espey M G, Miranda K M, Thomas D D, Wink D A. Radical. Biol. Med., 2002, 33: 827.
[82] DeMaster E G, Redfern B, Nagasawa H T. Biochem. Pharmacol., 1998, 55: 2007.
[83] Rosenthal J, Lippard S J. J.Am. Chem. Soc., 2010, 132: 5536.
[84] Apfel U P, Buccella D, Wilson J J, Lippard S J. Inorg. Chem., 2013, 52: 3285.
[85] Zhou Y, Liu K, Li J Y, Fang Y, Zhao T C, Yao C. Org. Lett., 2011, 13: 1290.
[86] Cline M R. Toscano J P. J. Phys. Org. Chem., 2011, 24: 993.
[87] Kawai K, Ieda N, Aizawa K, Suzuki T, Miyata N, Nakagawa H. J. Am. Chem. Soc., 2013, 135: 12690.
[88] Gladwin M T, Schechter A N, Kim-Shapiro D B, Patel R P, Hogg N, Shiva S, Cannon R O, Kelm M, Wink D A, Espey M G, Oldfield E H, Pluta R M, Freeman B A, Lancaster J R Jr, Feelisch M, Lundberg J O. Nat. Chem. Biol., 2005, 1: 308.
[89] Burden E H W. J. Analyst, 1961, 86: 429.
[90] Wolff I A, Wasserman A E. Science, 1972, 177: 15.
[91] Ghosh A, Das P, Saha S, Banerjee T, Bhatt H B, Das A. Inorganica Chimica Acta, 2011, 372: 115.
[92] Kumar V, Banerjee M, Chatterjee A. Talanta, 2012, 15: 610.
[93] Zheng H, Shang G Q, Yang S Y, Gao X, Xu J G. Org. Lett., 2008, 10: 2357.
[94] Dey R, Chatterjee T, Ranu B C. Tetrahedron Lett., 2011, 52: 461.
[95] Qinghai S, Bats J W, Schmittel M. Inorg. Chem., 2011, 50: 10531.
[96] Adarsh N, Shanmugasundaram M, Ramaiah D. Anal. Chem., 2013, 85: 10008.
[97] Kirsch M, Korth H G. Sustmann R, de Groot H. Biol. Chem., 2002, 383: 389.
[98] Byun J, Mueller D M, Fabjan J S, Heinecke J W. FEBS Lett., 1999, 455: 243.
[99] Yan Y, Krishnakumar S, Yu H, Ramishetti S, Deng L W, Wang S, Huang L, Huang D. J. Am. Chem. Soc., 2013, 135: 5312.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[5] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[6] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[7] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[8] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[11] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[12] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[13] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[14] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[15] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.