中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 487-501 DOI: 10.7536/PC130939 Previous Articles   Next Articles

• Review •

Preparation and Application of Supramolecular Functional Materials Based on π System

Xu Liang1,2, Li Yongjun*1, Li Yuliang*1   

  1. 1. CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 839 ) Cited
Export

EndNote

Ris

BibTeX

Recent years have witnessed a rapid development of the preparation methods for aggregation structures and have witnessed a continuous expansion of the application areas, which afford the opportunity to construct molecular devices with smaller size, stronger function and better performance. The organic conjugated molecules based on π system have attracted an increasing attention as a novel unit for the building of nanostructures. In this paper, beginning with the introduction of the concept and characteristic of nanomaterials, we discuss the construction methods for supramolecular functional materials based on organic π- conjugated and inorganic/organic hybrid systems. For organic π- conjugated system, the methods include vapor deposition, template and classic self-assembly. For inorganic/organic hybrid system, the methods include sol-gel, intercalation, blending, template and supramolecular self-assembly. Among these methods, we focus on the classic self-assembly one for organic system. In the process of self-assembly, several driving forces have important influence on the aggregation morphologies, including π-π stacking, hydrogen bonding, electrostatic interaction, dipole-dipole interaction, metal coordination, hydrophilic and hydrophobic interactions. Although in this process, one or two driving force predominate, several driving forces are involved actually. On the basis of the preparation of nanomaterials, we discuss the construction of functional molecular devices and their wide applications in the fields of field emission, photoelectric detection, solar cells, sensors, nonlinear optical and optical waveguide materials.

Contents
1 Introduction
2 Supramolecular functional materials based on organic molecules
2.1 The preparation of supramolecular functional materials based on organic molecules
2.2 The driving forces of self-assembly
2.3 The applications of supramolecular functional materials based on organic molecules
3 Supramolecular functional materials based on inorganic/organic hybrid systems
3.1 The preparation of supramolecular functional materials based on inorganic/organic hybrid systems
3.2 The applications of supramolecular functional materials based on inorganic/organic hybrid systems
4 Outlook

CLC Number: 

[1] 白春礼(BaiCL). 科学通报(China Sci.Bull.), 2001, 462: 9.
[2] Liu H, Xu J, Li Y, Li Y. Acc. Chem. Res., 2010, 43: 1496.
[3] Liu H, Li Y, Xiao S, Gan H, Jiu T, Li H, Jiang L, Zhu D, Yu D, Xiang B, Chen Y. J. Am. Chem. Soc., 2003, 125: 10794.
[4] Liu H, Zhao Q, Li Y, Liu Y, Lu F, Zhuang J, Wang S, Jiang L, Zhu D, Yu D, Chi L. J. Am. Chem. Soc., 2005, 127: 1120.
[5] Liu H, Li Y, Xiao S, Li H, Jiang L, Zhu D, Xiang B, Chen Y, Yu D. J. Phys. Chem. B, 2004, 108: 7744.
[6] Cheung C H, Djuriši D? A B, Leung Y H, Wei Z F, Xu S J, Chan W K. Chem. Phys. Lett., 2004, 394: 203.
[7] Zhao Y S, Di C, Yang W, Yu G, Liu Y, Yao J. Adv. Funct. Mater., 2006, 16: 1985.
[8] Zhao Y S, Xiao D, Yang W, Peng A, Yao J. Chem. Mater., 2006, 18: 2302.
[9] Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B. J. Am. Chem. Soc., 2002, 124: 13370.
[10] Gan H, Liu H, Li Y, Gan L, Jiang L, Jiu T, Wang N, He X, Zhu D. Carbon, 2005, 43: 205.
[11] Chen N, Huang C, Yang W, Chen S, Liu H, Li Y, Li Y. J. Phys. Chem. C, 2010, 114: 12982.
[12] Hu J S, Guo Y, Liang H P, Wan L J, Jiang L. J. Am. Chem. Soc., 2005, 127: 17090.
[13] Nalwa H S, Kakuta A, Mukoh A, Kasai H, Okada S, Oikawa H, Nakanishi H, Matsuda H. Adv. Mater., 1993, 5: 758.
[14] Kasai H, NalwaH S, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakansishi H. Jpn. J. Appl. Phys., 1992, 31: L1132.
[15] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105: 1491.
[16] Yang B, Ma Y G, Shen J C. Chem. J. Chinese U., 2008, 29: 2643.
[17] Li Y, Li X, Li Y, Liu H, Wang S, Gan H, Li J, Wang N, He X, Zhu D. Angew. Chem. Int. Ed., 2006, 45: 3639.
[18] Huang C, Wen L, Liu H, Li Y, Liu X, Yuan M, Zhai J, Jiang L, Zhu D. Adv. Mater., 2009, 21: 1721.
[19] Huang C, Li Y, Yang J E, Cheng N, Liu H, Li Y. Chem. Commun., 2010, 46: 3161.
[20] Simard M, Su D, Wuest J D. J. Am. Chem. Soc., 1991, 113: 4696.
[21] Xiao S, Li Y, Fang H, Li H, Liu H, Shi Z, Jiang L, Zhu D. Org. Lett., 2002, 4: 3063.
[22] Shi Z, Li Y, Gong H, Liu M, Xiao S, Liu H, Li H, Xiao S, Zhu D. Org. Lett., 2002, 4: 1179.
[23] Fang H, Wang S, Xiao S, Yang J, Li Y, Shi Z, Li H, Liu H, Xiao S, Zhu D. Chem. Mater., 2003, 15: 1593.
[24] Decher G, Hong J D. Macromol. Symp., 1991, 46: 321.
[25] Li Y J, Zhao Y J, Flood A H, Liu C, Liu H B, Li Y L. Chem. Eur. J., 2011, 17: 7499.
[26] Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang J C, Lee C S, Lee S T. Adv. Mater., 2009, 21: 4172.
[27] Zhang X, Jie J, Zhang W, Zhang C, Luo L, He Z, Zhang X, Zhang W, Lee C, Lee S. Adv. Mater., 2008, 20: 2427.
[28] Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T. Adv. Mater., 2008, 20: 1716.
[29] Xu J, Wen L, Zhou W, Lv J, Guo Y, Zhu M, Liu H, Li Y, Jiang L. J. Phys. Chem. C, 2009, 113: 5924.
[30] Xu J, Liu X, Lv J, Zhu M, Huang C, Zhou W, Yin X, Liu H, Li Y, Ye J. Langmuir, 2008, 24: 4231.
[31] Tschierske C. Angew. Chem. Int. Ed., 2000, 39: 2454.
[32] Zhang J, Li Y, Yang W, Lai SW, Zhou C, Liu H, Che C M, Li Y. Chem. Commun., 2012, 48: 3602.
[33] Hubbard J B, Silin V, Plant A L. Biophys. Chem., 1998, 75: 163.
[34] Moreau J J E, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies J L, Sauvajol J L. Chem. Eur. J., 2005, 11: 1527.
[35] Zhou C, Chen N, Yang J, Liu H, Li Y. Macromol. Rapid Commun., 2012, 33: 688.
[36] Musa I, Munindrasdasa D A I, Amaratunga G A J, Eccleston W. Nature, 1998, 395: 362.
[37] Chiu J J, Kei C C, Perng T P, Wang W S. Adv. Mater., 2003, 15: 1361.
[38] Gan H, Liu H, Li Y, Zhao Q, Li Y, Wang S, Jiu T, Wang N, He X, Yu D, Zhu D. J. Am. Chem. Soc., 2005, 127: 12452.
[39] Cui S, Li Y, Guo Y, Liu H, Song Y, Xu J, Lv J, Zhu M, Zhu D. Adv. Mater., 2008, 20: 309.
[40] Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. J. Phys. Chem. C, 2011, 115: 2611.
[41] Delaire J A, Nakatani K. Chem. Rev., 2000, 100: 1817.
[42] Huang C, Li Y, Song Y, Li Y, Liu H, Zhu D. Adv. Mater., 2010, 22: 3532.
[43] Xu J, Semin S, Niedzialek D, Kouwer P H J, Fron E, Coutino E, Savoini M, Li Y, Hofkens J, Uji-I H, Beljonne D, Rasing T, Rowan A E. Adv. Mater., 2013, 25: 2084.
[44] Chen S, Qin Z, Liu T, Wu X, Li Y, Liu H, Song Y, Li Y. Phys. Chem. Chem. Phys., 2013, 15: 12660.
[45] Chen S, Chen N, Yan Y L, Liu T, Yu Y, Li Y, Liu H, Zhao Y S, Li Y. Chem. Commun., 2012, 48: 9011.
[46] Liu T, Li Y, Yan Y, Li Y, Yu Y, Chen N, Chen S, Liu C, Zhao Y, Liu H. J. Phys. Chem. C, 2012, 116: 14134.
[47] Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D. Org. Lett., 2007, 9: 2313.
[48] Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C, Liu H, Li Y, Wang S, Zhu D. Org. Lett., 2008, 10: 1481.
[49] Xu L, Li Y, Yu Y, Liu T, Cheng S, Liu H, Li Y. Org. Biomol. Chem., 2012, 10: 4375.
[50] Zheng H, Li Y, Liu H, Yin X, Li Y. Chem. Soc. Rev., 2011, 40: 4506.
[51] Chiang C L, Ma C C M. Eur. Polym. J., 2002, 38: 2219.
[52] Corma A, Díaz U, García T, Sastre G, Velty A. J. Am. Chem. Soc., 2010, 132: 15011.
[53] Yakuphanoglu F. Sensor Actuat A-Phys., 2008, 141: 383.
[54] Possin G E. Rev. Sci. Instrum. , 1970, 41: 772.
[55] Park S, Lim J H, Chung S W, Mirkin C A. Science, 2004, 303: 348.
[56] Guo Y, Tang Q, Liu H, Zhang Y, Li Y, Hu W, Wang S, Zhu D. J. Am. Chem. Soc., 2008, 130: 9198.
[57] Liu H, Zuo Z, Guo Y, Li Y, Li Y. Angew. Chem. Int. Ed., 2010, 49: 2705.
[58] Gautam U K, Fang X, Bando Y, Zhan J, Golberg D. ACS Nano, 2008, 2: 1015.
[59] Liu H, Cui S, Guo Y, Li Y, Huang C, Zuo Z, Yin X, Song Y, Zhu D. J. Mater. Chem., 2009, 19: 1031.
[60] Guo Y, Liu H, Li Y, Li G, Zhao Y, Song Y, Li Y. J. Phys. Chem. C, 2009, 113: 12669.
[61] Lin H, Liu H, Qian X, Lai S W, Li Y, Chen N, Ouyang C, Che C M, Li Y. Inorg. Chem., 2011, 50: 7749.
[62] Chen N, Qian X, Lin H, Liu H, Li Y, Li Y. Dalton Trans., 2011, 40: 10804.
[63] Palaniappan K, Murphy J W, Khanam N, Horvath J, Alshareef H, QuevedoL M, Biewer M C, Park S Y, Kim M J, Gnade B E, Stefan M C. Macromolecules, 2009, 42: 3845.
[64] Dayal S, Reese M O, Ferguson A J, Ginley D S, Rumbles G, Kopidakis N. Adv. Funct. Mater., 2010, 20: 2629.
[65] Van Hal P A, Wienk M M, Kroon J M, Verhees W J H, Slooff L H, van Gennip W J H, Jonkheijm P, Janssen R A J. Adv. Mater., 2003, 15: 118.
[66] Ravirajan P, Haque S A, Durrant J R, Bradley D D C, Nelson J. Adv. Funct. Mater., 2005, 15: 609.
[67] Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W. J. Am. Chem. Soc., 2009, 131: 3644.
[68] Beek W J E, Wienk M M, Kemerink M, Yang X, Janssen R A J. J. Phys. Chem. B, 2005, 109: 9505.
[69] Beek W J E, Wienk M M, Janssen R A J. Adv. Funct. Mater., 2006, 16: 1112.
[70] Gur I, Fromer N A, Chen CP, Kanaras A G, Alivisatos A P. Nano Lett., 2006, 7: 409.
[71] Guo Y, Zhang Y, Liu H, Lai SW, Li Y, Li Y, Hu W, Wang S, Che C M, Zhu D. J. Phys. Chem. Lett., 2009, 1: 327.
[72] Evans S D, Johnson S R, Cheng Y L, Shen T. J. Mater. Chem., 2000, 10: 183.
[73] Cho E S, Kim J, Tejerina B, Hermans T M, Jiang H, Nakanishi H, Yu M, Patashinski A Z, Glotzer S C, Stellacci F, Grzybowski B A. Nat. Mater., 2012, 11: 978.
[74] Wang K, Qian X, Zhang L, Li Y, Liu H. ACS Appl. Mater. Interfaces, 2013, 5: 5825.
[75] Thomas K G, Kamat P V. Acc. Chem. Res., 2003, 36: 888.
[76] He X, Liu H, Li Y, Wang S, Li Y, Wang N, Xiao J, Xu X, Zhu D. Adv. Mater., 2005, 17: 2811.

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[5] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[9] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[10] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[11] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[12] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[13] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[14] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[15] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.