中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 512-521 DOI: 10.7536/PC130925 Previous Articles   Next Articles

• Review •

Micro-Scale Combinatorial Catalyst Screening Techniques

Zhang Hao1, Fang Qun*1, Fan Jie*2   

  1. 1. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
    2. Key Lab of Applied Chemistry of Zhejiang Province, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.20825517, 20873122, 21003106)

PDF ( 863 ) Cited
Export

EndNote

Ris

BibTeX

The catalyst discovery is of vital importance in many applications including chemical industry, environmental protection, and the development of sustainable energy. Currently, catalyst development is still a laborious and time-consuming work. The micro-combinatorial catalyst screening technique provides various advantages including high throughput, low consumption, and high integration density. It is applicable to large number of initial catalyst screening and subsequent optimization. This article reviews the recent progress of various micro-scale combinatorial catalyst screening techniques, including multi-well plate, microarray, multi-channel microreactor-based techniques.

Contents
1 Introduction
2 Micro-scale combinatorial catalyst screening techniques
2.1 Multi-well plate
2.2 Microarray
2.3 Multi-channel microreactor
3 Conclusion

CLC Number: 

[1] Disalvo F J. Science, 1990, 247: 649.
[2] Newsam J M, Schuth F. Biotechnol. Bioeng., 1999, 61: 203.
[3] Schuth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T. Top. Catal., 2002, 21: 55.
[4] Seyler M, Stoewe K, Maier W F. Appl. Catal. B, 2007, 76: 146.
[5] Corthals S, Witvrouwen T, Jacobs P, Sels B. Catal. Today, 2011, 159: 12.
[6] Gaudillere C, Vernoux P, Mirodatos C, Caboche G, Farrusseng D. Catal. Today, 2010, 157: 263.
[7] Gobin O C, Joaristi A M, Schueth F. J. Catal., 2007, 252: 205.
[8] Omata K, Ishii H, Horiguchi J, Kobayashi S, Yamazaki Y, Yamada M. J. Comb. Chem., 2009, 11: 169.
[9] Yang Y, Lin T, Weng X L, Darr J A, Wang X Z. Comp. Chem. Eng., 2011, 35: 671.
[10] Stair P C. J. Chem. Phys., 2008, 128: 182507.
[11] Taylor S J, Morken J P. Science, 1998, 280: 267.
[12] Holzwarth A, Schmidt H W, Maier W F. Angew. Chem. Int. Ed., 1998, 37: 2644.
[13] Shioyama H, Yamada Y, Ueda A, Kobayashi T. Carbon, 2003, 41: 607.
[14] Desrosiers P, Guram A, Hagemeyer A, Jandeleit B, Poojary D M, Turner H, Weinberg H. Catal. Today, 2001, 67: 397.
[15] Lucas M, Claus P. Chem. Ing. Tech., 2001, 73: 252.
[16] Claus P, Honicke D, Zech T. Catal. Today, 2001, 67: 319.
[17] Lettmann C, Hinrichs H, Maier W F. Angew. Chem. Int. Ed., 2001, 40: 3160.
[18] Weidenhof B, Reiser M, Stowe K, Maier W F, Kim M, Azurdia J, Gulari E, Seker E, Barks A, Laine R M. J. Am. Chem. Soc., 2009, 131: 9207.
[19] Rajagopalan P, Stowe K, Maier W F. Top. Catal., 2010, 53: 19.
[20] Tang X L, Liu J, Wang B, Yu H W. World J. Microbiol. Biotechnol., 2011, 27: 129.
[21] Sandstrom A G, Wikmark Y, Engstrom K, Nyhlen J, Backvall J E. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 78.
[22] Macovei C, Vicennati P, Quinton J, Nevers M C, Volland H, Creminon C, Taran F. Chem. Commun., 2012, 48: 4411.
[23] Dai Q X, Xiao H Y, Li W S, Na Y Q, Zhou X P. J. Comb. Chem., 2005, 7: 539.
[24] Dai Q X, Xiao H Y, Li W S, Na Y Q, Zhou X P. Appl. Catal. A, 2005, 290: 25.
[25] Xiao H Y, Dai Q X, Li W S, Au C T, Zhou X P. J. Mol. Catal. A: Chem., 2006, 245: 17.
[26] Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C. Nat. Mater., 2004, 3: 787.
[27] Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Accounts Chem. Res., 2007, 40: 784.
[28] Fan J, Boettcher S W, Stucky G D. Chem. Mater., 2006, 18: 6391.
[29] Liu J J, Zou S H, Li S, Liao X F, Hong Y J, Xiao L P, Fan J. J. Mater. Chem. A, 2013, 1: 4038.
[30] Ma G C, Yan X Q, Li Y L, Xiao Y L, Huang Z J, Lu Y P, Fan J. J. Am. Chem. Soc., 2010, 132: 9596.
[31] Xu S, Hong Y, Chen C, Li S, Xiao L, Fan J. J. Mater. Chem. A, 2013, 1: 6191.
[32] Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin E S, Mallouk T E. Science, 1998, 280: 1735.
[33] Liu X N, Shen Y, Yang R T, Zou S H, Ji X L, Shi L, Zhang Y C, Liu D Y, Xiao L P, Zheng X M, Li S, Fan J, Stucky G D. Nano Lett., 2012, 12: 5733.
[34] 范杰(Fan J), 刘小闹(Liu X N). 化学通报(Chemistry), 2013, 76: 675.
[35] Fan J, Guo J F, Liu X N. CN 101549858, 2009.
[36] Gregoire J M, Xiang C, Mitrovic S, Liu X, Marcin M, Cornell E W, Fan J, Jin J. J. Electrochem. Soc., 2013, 160: F337.
[37] Breysse M, Claudel B, Faure L, Guenin M, Williams R J J. J. Catal., 1976, 45: 137.
[38] Utsunomiya K, Nakagawa M, Sanari N, Kohata M, Tomiyama T, Yamamoto I, Wada T, Yamashita N, Yamashita Y. Sens. Actuat. B, 1995, 25: 790.
[39] Nakagawa M, Yamamoto I, Yamashita N. Anal. Sci., 1998, 14: 209.
[40] Okabayashi T, Matsuo N, Yamamoto I, Utsunomiya K, Yamashita N, Nakagawa M. Sens. Actuat. B, 2005, 108: 515.
[41] Garcia-Campana A M, Baeyens W R G, Zhang X R, Smet E, Van der Weken G, Nakashima K, Calokerinos A C. Biomed. Chromatogr., 2000, 14: 166.
[42] Shi J J, Yan R X, Zhu Y F, Zhang X R. Talanta, 2003, 61: 157.
[43] Zhang Z Y, Jiang H J, Xing Z, Zhang X R. Sens. Actuat. B, 2004, 102: 155.
[44] Zhang Z Y, Xu K, Xing Z, Zhang X R. Talanta, 2005, 65: 913.
[45] Zhang Z Y, Xu K, Baeyens W R G, Zhang X R. Anal. Chim. Acta, 2005, 535: 145.
[46] Cao X O, Zhang X R. Luminescence, 2005, 20: 243.
[47] Wu Y Y, Zhang S C, Na N, Wang X, Zhang X R. Sens. Actuat. B, 2007, 126: 461.
[48] Ye Q, Gao Q, Zhang X R, Xu B Q. Chem. J. Chin. Univ. Chin., 2006, 27: 726.
[49] Ye Q, Gao Q, Zhang X R, Xu B Q. Acta Chim. Sin., 2006, 64: 751.
[50] Ye Q, Gao Q, Zhang X R, Xu B Q. Catal. Commun., 2006, 7: 589.
[51] Wang X, Na N, Zhang S C, Wu Y Y, Zhang X R. J. Am. Chem. Soc., 2007, 129: 6062.
[52] Na N, Zhang S C, Wang X, Zhang X R. Anal. Chem., 2009, 81: 2092.
[53] Wu L Y, Zhang Y T, Zhang S C, Zhang X R. Anal. Methods, 2012, 4: 2218.
[54] Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. Adv. Mater., 2005, 17: 2993.
[55] Na N, Zhang S C, Wang S, Zhang X R. J. Am. Chem. Soc., 2006, 128: 14420.
[56] Walsh D A, Fernandez J L, Bard A J. J. Electrochem. Soc., 2006, 153: E99.
[57] Minguzzi A, Alpuche-Aviles M A, Lopez J R, Rondinini S, Bard A J. Anal. Chem., 2008, 80: 4055.
[58] Jung C H, Sanchez-Sanchez C M, Lin C L, Rodriguez-Lopez J, Bard A J. Anal. Chem., 2009, 81: 7003.
[59] Lin C L, Rodriguez-Lopez J, Bard A J. Anal. Chem., 2009, 81: 8868.
[60] Ye H C, Lee J W, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322.
[61] Liu G J, Bard A J. J. Phys. Chem. C, 2010, 114: 17509.
[62] Liu G J, Liu C Y, Bard A J. J. Phys. Chem. C, 2010, 114: 20997.
[63] Zhang F, Roznyatoyskiy V, Fan F R F, Lynch V, Sessler J L, Bard A J. J. Phys. Chem. C, 2011, 115: 2592.
[64] Ye H C, Park H S, Bard A J. J. Phys. Chem. C, 2011, 115: 12464.
[65] Park H S, Kweon K E, Ye H C, Paek E, Hwang G S, Bard A J. J. Phys. Chem. C, 2011, 115: 17870.
[66] Li W P, Fan F R F, Bard A J. J. Solid State Electrochem., 2012, 16: 2563.
[67] Berglund S P, Lee H C, Nunez P D, Bard A J, Mullins C B. Phys. Chem. Chem. Phys., 2013, 15: 4554.
[68] Bhattacharya C, Lee H C, Bard A J. J. Phys. Chem. C, 2013, 117: 9633.
[69] Fernandez J L, Walsh D A, Bard A J. J. Am. Chem. Soc., 2005, 127: 357.
[70] Lee J W, Ye H C, Pan S L, Bard A J. Anal. Chem., 2008, 80: 7445.
[71] Jang J S, Lee J W, Ye H C, Fan F R F, Bard A J. J. Phys. Chem. C, 2009, 113: 6719.
[72] Liu W, Ye H C, Bard A J. J. Phys. Chem. C, 2010, 114: 1201.
[73] Johann T, Brenner A, Schwickardi M, Busch O, Marlow F, Schunk S, Schuth F. Angew. Chem. Int. Ed., 2002, 41: 2966.
[74] Zhang H, Wang J J, Fan J, Fang Q. Talanta, 2013, 116: 946.

[1] Dong Quanfeng, Song Jie, Zheng Mingsen, Susanne Jacke, Wolfram Jaegermann. Investigation of Microscale Lithium Ion Batteries and the Key Materials [J]. Progress in Chemistry, 2011, 23(0203): 374-381.
[2] Lai Jingjuan1 Zhou Jianhua2 Zheng Mingang1 Longquan1 Zheng Baozhong1*. Ionic Liquid Supported Substrates for Organic Synthesis [J]. Progress in Chemistry, 2008, 20(06): 899-908.
[3] Chen Yuyan, Liu Gang**. Advance in Dynamic Combinatorial Chemistry [J]. Progress in Chemistry, 2007, 19(012): 1903-1908.
[4] Huang Qiang**,Long Quan,Zheng Baozhong. Application of Raman Spectra in Solid-Phase Organic Synthesis [J]. Progress in Chemistry, 2007, 19(01): 165-172.
[5] Huang Qiang,Long Quan,Zheng Baozhong**. Applications of FTIR in Solid-Phase Organic Synthesis [J]. Progress in Chemistry, 2005, 17(05): 889-896.
[6] Huang Qiang,Long Quan,Zheng Baozhong**. Linkers for Solid-Phase Organic Synthesis [J]. Progress in Chemistry, 2004, 16(02): 236-.
[7] Ma Ning,Li Zhengming*,Zhao Weiguang. Progress in Ugi Reaction [J]. Progress in Chemistry, 2003, 15(03): 186-.
[8] Zhang Cheng*,Li Weizhang,Yun Liuhong. Application of the Combinatorial Chemistry to Research of the Natural Products [J]. Progress in Chemistry, 2003, 15(03): 194-.
[9] Chen Xiaofeng,Lu Zuhong*. Combinatorial Synthesis of Oligosaccharides [J]. Progress in Chemistry, 2002, 14(06): 477-.
[10] Sun Xiaolin,Hong Guangyan. Combinatorial Chemistry Used in Synthesizing Functional Materials [J]. Progress in Chemistry, 2001, 13(05): 398-.
[11] Xiao Yuansheng,Wan Boshun,Liang Xinmiao*. Progress in Solution Phase Combinatorial Chemistry [J]. Progress in Chemistry, 2001, 13(04): 268-.
[12] Cheng Feng,Liu Hong,Luo Xiaomin,Jiang Hualiang**,Shen Jingkang,Chen Kaixian,Ji Ruyun. Progress in the Design of Matrix Metalloproteinase Inhibitors [J]. Progress in Chemistry, 2001, 13(04): 283-.
[13] Xu Jun. Chemical Diversity Exploration and Combinatorial Chemistry in Drug Discovery [J]. Progress in Chemistry, 1999, 11(03): 286-.
[14] Li Weizhang,Liu Gang,Yun Liuhong. Small Molecular Chemical Libraries Generated Through Solid Phase Organic Synthesis [J]. Progress in Chemistry, 1997, 9(03): 239-.
[15] Liu Gang,Yun Liuhong,Wang Jianxin. Combinatorial Chemistry, Molecular Libraries and Studying of New Drugs [J]. Progress in Chemistry, 1997, 9(03): 223-.