中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 560-571 DOI: 10.7536/PC130923 Previous Articles   Next Articles

• Review •

Graphene and Its Polymer Nanocomposites

Zhang Li1, Wu Juntao*1, Jiang Lei1,2   

  1. 1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, College of Chemistry and Environment, Beihang University, Beijing 100191, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51003004, 51373007), the Beijing Natural Science Foundation (No.2142019), the National Basic Research Program of China (No. 2010CB934700, 2012CB933200), the Fundamental Research Funds for the Central Universities, and the SRF for ROCS, SEM

PDF ( 2554 ) Cited
Export

EndNote

Ris

BibTeX

Graphene is a new nanomaterial with strict two-dimensional layers structure. With excellent mechanical, high electrical and thermal properties, graphene is the ideal filler for polymer-based nanocomposites. Graphene/polymer nanocomposites greatly draw researchers’ attentions in recent years. In this review, we presented and discussed the current development of graphene/polymer nanocomposites. After introducing various methods to synthesize graphene, covalent and noncovalent functionalization of graphene are briefly summarized. Particular emphasis is placed on general methods used to fabricate graphene/polymer nanocomposites and mechanical, electrical, thermal, and gas barrier properties of graphene/polymer nanocomposites. Finally, the challenge of this research area was summarized and its future outlook was prospected.

Contents
1 Introduction
2 Synthesis methods and surface modification of graphene
2.1 Synthesis methods of grapheme
2.2 Surface modification of graphene
3 Graphene-based polymer nanocomposites
3.1 Fabrication approaches to graphene-based polymer nanocomposites
3.2 Properties of graphene-based polymer nano-composites
4 Conclusions and application outlook

CLC Number: 

[1] Wallace P R. Phys. Rev., 1947, 71: 622.
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902.
[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351.
[5] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[6] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[7] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, Mcgovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrarri A C, Coleman J N. Nat. Nanotechnol., 2008, 3: 563.
[8] Pu N W, Wang C A, Sung Y, Liu Y M, Ger M D. Mater. Lett., 2009, 63: 1987.
[9] Sidorov A N, Yazdanpanah M M, Jalilian R, Ouseph P J, Cohn R W, Sumanasekera G U. Nanotechnology, 2007, 18: 135301.
[10] Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J. Adv. Funct. Mater., 2008, 18: 1518.
[11] Novoselov K S. Angew. Chem. Int. Ed., 2011, 50: 6986.
[12] Singh V, Joung D, Zhai a L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56: 1178.
[13] Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23: 1089.
[14] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558.
[15] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101.
[16] Liang Y Y, Wu D Q, Feng X L, Müllen K. Adv. Mater., 2009, 21: 1679.
[17] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv. Funct. Mater., 2009, 19: 1987.
[18] Gao W, Alemany L B, Ci L, Ajayan P M. Nat. Chem., 2009, 1: 403.
[19] Wang G X, Shen X P, Wang B, Yao J, Park J. Carbon, 2009, 47: 1359.
[20] Xu Y X, Lin Z Y, Huang X Q, Wang Y, Huang Y, Duan X F. Adv. Mater., 2013, 25: 5779.
[21] Zhu C Z, Guo S J, Fang Y X, Dong S J. ACS Nano, 2010, 4: 2429.
[22] Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J, Guo S W. Chem. Commun., 2010, 46: 1112.
[23] Wang Y, Shi Z X, Yin J. ACS Appl. Mater. Interfaces, 2011, 3: 1127.
[24] Salas E C, Sun Z Z, Lüttge A, Tour J M. ACS Nano, 2010, 4: 4852.
[25] Dreyer D R, Murali S, Zhu Y W, Ruoff R S. Bielawski C W. J. Mater. Chem., 2011, 21: 3443.
[26] Zhu Y W, Stoller M D, Cai W W, Velamakanni A, Piner R D, Chen D, Ruoff R S. ACS Nano, 2010, 4: 1227.
[27] Chen W F, Yan L F. Nanoscale, 2010, 2: 559.
[28] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324: 1312.
[29] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706.
[30] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10: 424.
[31] Wang G, Zhang M, Zhu Y, Ding G Q, Jiang D, Guo Q L, Liu S, Xie X M, Chu P K, Di Z F, Wang X. Scientific reports, 2013, 3: 2465.
[32] Obraztsov A N. Nat. Nanotechnol., 2009, 4: 212.
[33] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D. J. Phys. Chem. B, 2004, 108: 19912.
[34] Huang H, Chen W, Chen S, Wee A T S. ACS Nano, 2: 2513.
[35] Hannon J B, Tromp R M. Phys. Rev. B, 2008, 77: 241404.
[36] Riedl C, Coletti C, Starke U. J. Phys. D: Appl. Phys., 2010, 43: 374009.
[37] Hu Y K, Ruan M, Guo Z L, Dong R, Palmer J, Hankinson J, Berger C, Heer W A D. J. Phys. D: Appl. Phys., 2012, 45: 154010.
[38] Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A. Science, 2007, 317: 219.
[39] Wu J S, Pisula W, Müllen K. Chem. Rev., 2007, 107: 718.
[40] Dietz F, Tyutyulkov N, Madjarova G, Müllen K. J. Phys. Chem. B, 2000, 104: 1746.
[41] Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 411.
[42] Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R. J. Phys. Chem. C, 2009, 113: 4257.
[43] 田圆(Tian Y), 赵倩莹(Zhao Q Y), 胡靖(Hu J), 周辰(Zhou C), 缪灵(Miao L), 江建军(Jiang J J). 化学进展(Progress in Chemistry), 2012, 24 (4): 512.
[44] 马秀芳(Ma X F), 孙科举(Sun K J), 李微雪(Li W X). 科学通报(Chinese Science Bulletin), 2012, 57(12): 987.
[45] Wang J L, Ma L, Yuan Q H, Zhu L Y, Ding F. Angew. Chem. Int. Ed., 2011, 50: 8041.
[46] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458: 877.
[47] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872.
[48] Terrones M. ACS Nano, 2010, 4: 1775.
[49] Terrones M. Nature, 2009, 458: 845.
[50] Subrahmanyam K S, Vivekchand S R C, Govindaraj A, Rao C N R. J. Mater. Chem., 2008, 18: 1517.
[51] Longun J, Iroh J O. Carbon, 2012, 50: 1823.
[52] Fang M, Wang K G, Lu H B, Yang Y L, Nutt S. J. Mater. Chem., 2009, 19: 7098.
[53] Loh K P, Bao Q L, Ang P K, Yang J Y. J. Mater. Chem., 2010, 20: 2277.
[54] Chen X Y, Yuan L, Yang P Y, Hu J H, Yang D. J. Polym. Sci. Polym. Chem., 2011, 49: 4977.
[55] Wang B D, Yang D, Zhang J Z, Xi C B, Hu J H. J. Phys. Chem. C, 2011, 115: 24636.
[56] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Langmuir, 2009, 25: 12030.
[57] Hsiao M C, Liao S H, Yen M Y, Liu P I, Pu N W, Wang C A, Ma C C M. ACS Appl. Mater. Interfaces, 2010, 2: 3092.
[58] Yang H F, Li F H, Shan C S, Han D X, Zhang Q X, Niu L, Ivaska A. J. Mater. Chem., 2009, 19: 4632.
[59] Englert J M, Dotzer C, Yang G, Schmid M, Papp C, Gottfried J M, Steinrück H P, Spiecker E, Hauke F, Hirsch A. Nat. Chem., 2011, 3: 279.
[60] Lin Y, Jin J, Song M. J. Mater. Chem., 2011, 21: 3455.
[61] Salavagione H J, Martínez G, Ellis G. Macromol. Rapid Commun., 2011, 32: 1771.
[62] Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Carbon, 2006, 44: 3342.
[63] Vallés C, Drummond C, Saadaoui H, Furtado C A, He M S, Roubeau O, Ortolani L, Monthioux M, Pénicaud A. J. Am. Chem. Soc., 2008, 130: 15802.
[64] Patil A J, Vickery J L, Scott T B, Mann S. Adv. Mater., 2009, 21: 3159.
[65] Yang X Y, Zhang X Y, Liu Z F, Ma Y F, Huang Y, Chen Y S. J. Phys. Chem. C, 2008, 112: 17554.
[66] Zhang X Q, Feng Y Y, Tang S D, Feng W. Carbon, 2010, 48: 211.
[67] Bai H, Xu Y X, Zhao L, Li C, Shi G Q. Chem. Commun., 2009, 1667.
[68] Su Q, Pang S P, Alijani V, Li C, Feng X L, Müllen K. Adv. Mater., 2009, 21: 3191.
[69] Chen D, Zhu H, Liu T X. ACS Appl. Mater. Interfaces, 2010, 2: 3702.
[70] Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M. J. Mater. Chem., 2011, 21: 13569.
[71] Liao W H, Yang S Y, Wang J Y, Tien H W, Hsiao S T, Wang Y S, Li S M, Ma C C M, Wu Y F. ACS Appl. Mater. Interfaces, 2013, 5: 869.
[72] Shi H G, Li Y, Guo T Y. J. Appl. Polym. Sci., 2013, 128: 3163.
[73] Wang X, Hu Y, Song L, Yang H Y, Xing W Y, Lu H D. J. Mater. Chem., 2011, 21: 4222.
[74] Kim H, Miura Y, Macosko C W. Chem. Mater., 2010, 22: 3441.
[75] Chen Z X, Lu H B. J. Mater. Chem., 2012, 22: 12479.
[76] Yang S D, Shen C M, Liang Y Y, Tong H, He W, Shi X Z, Zhang X G, Gao H J. Nanoscale, 2011, 3: 3277.
[77] Xu C H, Sun J, Gao. L. J. Mater. Chem., 2011, 21: 11253.
[78] Li J, Xie H Q, Li Y, Liu J, Li Z X. J. Power Sources, 2011, 196: 10775.
[79] Feng L, Guan G H, Li C C, Zhang D, Xiao Y N, Zheng L C, Zhu W X. J. Macromol. Sci. Part A, 2013, 50: 720.
[80] Hazarika M, Jana T. Compos. Sci. Technol., 2013, 87: 94.
[81] Liang J J, Xu Y F, Huang Y, Zhang L, Wang Y, Ma Y F, Li F F, Guo T Y, Chen Y S. J. Phys. Chem. C, 2009, 113: 9921.
[82] Yang L P, Phua S L, Toh C L, Zhang L Y, Ling H, Chang M, Zhou D, Dong Y L, Lu X H. RSC Adv., 2013, 3: 6377.
[83] Yoonessi M, Gaier J R. ACS Nano, 2010, 4: 7211.
[84] Zhang H B, Yan Q, Zheng W G, He Z X, Yu Z Z. ACS Appl. Mater. Interfaces, 2011, 3: 918.
[85] Zhao X, Zhang Q H, Chen D J. Macromolecules, 2010, 43: 2357.
[86] Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y, Chen Y S. Adv. Funct. Mater., 2009, 19: 2297.
[87] Xu Y X, Hong W J, Bai H, Li C, Shi G Q. Carbon, 2009, 47: 3538.
[88] Salavagione H J, Martínez G, Gomez M A. J. Mater. Chem., 2009, 19: 5027.
[89] Bao C L, Guo Y Q, Song L, Hu Y. J. Mater. Chem., 2011, 21: 13942.
[90] Yang X M, Li L, Shang S M, Tao X M. Polymer, 2010, 51: 3431.
[91] Li Y Q, Yu T, Yang T Y, Zheng L X, Liao K. Adv. Mater., 2012, 24: 3426.
[92] Rafiee M A, Rafiee J, Wang Z, Song H H, Yu Z Z, Koratkar N. ACS Nano, 2009, 3: 3884.
[93] Kim H, Macosko C W. Polymer, 2009, 50: 3797.
[94] Gorrasi G, Lieto R D, Patimo G, Pasquale S D, Sorrentino A. Polymer, 2011, 52: 1124.
[95] Huang T, Lu R G, Su C, Wang H N, Guo Z, Liu P, Huang Z Y, Chen H M, Li T S. ACS Appl. Mater. Interfaces, 2012, 4: 2699.
[96] Satti A, Larpent P, Gun’ko Y. Carbon, 2010, 48: 3376.
[97] Fang M, Zhang Z, Li J F, Zhang H D, Lu H B, Yang Y L. J. Mater. Chem., 2010, 20: 9635.
[98] Patole A S, Patole S P, Kang H, Yoo J B, Kim T H, Ahn J H. J. Colloid Interf. Sci., 2010, 350: 530.
[99] Lu H B, Chen Z X, Ma C. J. Mater. Chem., 2012, 22: 16182.
[100] Ritchie R O. Nat. Mater., 2011, 10: 817.
[101] Vickery J L, Patil A J, Mann S. Adv. Mater., 2009, 21: 2180.
[102] Huang L, Li C, Yuan W J, Shi G Q. Nanoscale, 2013, 5: 3780.
[103] Putz K W, Compton O C, Segar C, An Z, Nguyen S T, Brinson L C. ACS Nano, 2011, 5: 6601.
[104] Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20: 3322.
[105] Zhu J, Zhang H N, Kotov N A. ACS Nano, 2013, 7: 4818.
[106] Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D. Macromolecules, 2010, 43: 9411.
[107] Tang Y H, Wu N, Luo S L, Liu C B, Wang K, Chen L Y. Macromol. Rapid Commun., 2012, 33: 1780.
[108] Fantner G E, Hassenkam T, Kindt J H, WeaverJ C, Birkedal H, Pechenik L, Cutroni J A, Cidade G G, Stucky G D, Morse D E, Hansma P K. Nat. Mater., 2005, 4: 612.
[109] Yang S Y, Lin W N, Huang Y L, Tien H W, Wang J Y, Ma C C M, Li S M, Wang Y S. Carbon, 2011, 49: 793.
[110] Shin M K, Lee B, Kim S H, Lee J A, Spinks G M, Gambhir S, Wallace G G, Kozlov M E, Baughman R H, Kim S J. Nat. Commun., 2012, 3: 650.
[111] Syurik Y V, Ghislandi M G, Tkalya E E, Paterson G, McGrouther D, Ageev O A, Loos J. Macromol. Chem. Phys., 2012, 213: 1251.
[112] Lee Y R, Raghu A V, Jeong H M, Kim B K. Macromol. Chem. Phys., 2009, 210: 1247.
[113] Bao C L, Guo Y Q, Song L, Kan Y C, Qian X D, Hu Y. J. Mater. Chem., 2011, 21: 13290.
[114] Yan J, Wei T, Shao B, Fan Z J, Qian W Z, Zhang M L, Wei F. Carbon, 2010, 48: 487.
[115] Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4: 1963.
[116] Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Nanoscale, 2010, 2: 2164.
[117] Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L S, Nam J D, Sinh L H, Seppl J. Polymer, 2011, 52: 5237.
[118] Park O K, Hahm M G, Lee S, Joh H I, Na S I, Vajtai R, Lee J H, Ku B C, Ajayan P M. Nano Lett., 2012, 12: 1789.
[119] Song Z P, Xu T, Gordin M L, Jiang Y B, Bae I T, Xiao Q F, Zhan H, Liu J, Wang D H. Nano Lett., 2012, 12: 2205.
[120] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y. ACS Appl. Mater. Interfaces, 2012, 4: 4623.
[121] Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J. J. Mater. Chem., 2010, 20: 3035.
[122] Pham V H, Cuong T V, Dang T T, Hur S H, Kong B S, Kim E J, Shin E W, Chung J S. J. Mater. Chem., 2011, 21: 11312.
[123] Wu N, She X L, Yang D J, Wu X F, Su F B, Chen Y F. J. Mater. Chem., 2012, 22: 17254.
[124] Pham V H, Dang T T, Hur S H, Kim E J, Chung J S. ACS Appl. Mater. Interfaces, 2012, 4: 2630.
[125] Yang Y K, He C E, Peng R G, Baji A, Du X S, Huang Y L, Xie X L, Mai Y W. J. Mater. Chem., 2012, 22: 5666.
[126] Zhang H B, Zheng W G, Yan Q, Jiang Z G, Yu Z Z. Carbon, 2012, 50: 5117.
[127] Kuila T, Bose S, Khanra P, Kim N H, Rhee K Y, Lee J H. Composites: Part A, 2011, 42: 1856.
[128] Yousefi N, Gudarzi M M, Zheng Q B, Aboutalebi S H, Sharif F, Kim J K. J. Mater. Chem., 2012, 22: 12709.
[129] Ding J N, Fan Y, Zhao C X, Liu Y B, Yu C T, Yuan N Y. J. Compos. Mater., 2012, 46: 747.
[130] Raghu A V, Lee Y R, Jeong H M, Shin C M. Macromol. Chem. Phys., 2008, 209: 2487.
[131] Kim S C, Oh S M, Lee H I, Ryu K S, Jeong H M, Shin H S, Lee S C, Shin C M. Macromol. Res., 2012, 20: 768.
[132] Si P, Ding S J, Lou X W, Kim D H. RSC Advances, 2011, 1: 1271.
[133] Bora C, Dolui S K. Polymer, 2012, 53: 923.
[134] Chen F, Liu P, Zhao Q Q. Electrochim. Acta, 2012, 76: 62.
[135] Schwamb T, Burg B R, Schirmer N C, Poulikakos D. Nanotechnology, 2009, 20: 405704.
[136] Luo T F, Lloyd J R. Adv. Funct. Mater., 2012, 22: 2495.
[137] Hu L, Desai T, Keblinski P. J. Appl. Phys., 2011, 110: 033517.
[138] Ganguli S, Roy A K, Anderson D P. Carbon, 2008, 46: 806.
[139] Yu A P, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. J. Phys. Chem. C, 2007, 111: 7565.
[140] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Alonso H M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C. Nat. Nanotechnol., 2008, 3: 327.
[141] Koo M, Bae J S, Shim S E, Kim D, Nam D G, Lee J W, Lee G W, Yeum J H, Oh W. Colloid Polym. Sci., 2011, 289: 1503.
[142] Bao C L, Song L, Wilkie C A, Yuan B H, Guo Y Q, Hu Y, Gong X L. J. Mater. Chem., 2012, 22: 16399.
[143] Huang G B, Liang H D, Wang Y, Wang X, Gao J R, Fei Z D. Mater. Chem. Phys., 2012, 132: 520.
[144] Bunch J S, Verbridge S S, Alden J S, Zande A M V D, Parpia J M, Craighead H G, McEuen P L. Nano Lett., 2008, 8: 2458.
[145] Compton O C, Kim S, Pierre C, Torkelson J M, Nguyen S T. Adv. Mater., 2010, 22: 4759.
[146] Tseng I H, Liao Y F, Chiang J C, Tsai M H. Mater. Chem. Phys., 2012, 136: 247.
[147] Paul D R, Robeson L M. Polymer, 2008, 49: 3187.

[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[7] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[11] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[14] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[15] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
Viewed
Full text


Abstract

Graphene and Its Polymer Nanocomposites