中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 572-581 DOI: 10.7536/PC130919 Previous Articles   Next Articles

• Review •

Current Studies of Anode Materials for Sodium-Ion Battery

He Hanna, Wang Haiyan*, Tang Yougen, Liu Younian   

  1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21301193), and the National Science Foundation for Post-doctoral Scientists of China (No.2013M530356)

PDF ( 3932 ) Cited
Export

EndNote

Ris

BibTeX

Room-temperature rechargeable Na ions batteries have attracted enormous interest due to its low cost and the environmental abundance of the sodium, which are considered as the best candidate for replacing the Li ion batteries in the large-scale electric energy storage. In recent years, the studies of Na ion batteries have made significant progress and the related components have been enriched. The current researches of anode materials for sodium ion batteries are reviewed in details, with emphasis on the electrochemical properties and charge-discharge mechanisms of carbon-based materials, alloys, non-metal substances, metal oxides and organic compounds. The main problems of these kinds of anode materials are discussed and the probable strategies are proposed. Then, the application prospective and the research directions of Na ions batteries in the future are also forecasted.

Contents
1 Introduction
2 Carbon-based materials
2.1 Graphite
2.2 Ungraphitised carbon
3 Metal or alloy materials 4 Metal oxides
5 Non-metal substance
6 Titanate
7 Organic materials
8 Conclusions and outlook

CLC Number: 

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[2] Lu X, Xia G, Lemmon J P, Yang Z. J. Power Sources, 2010, 195: 2431.
[3] Wu X L, Jiang L Y, Cao F F, Guo Y G, Wan L J. Adv. Mater., 2009, 21: 2710.
[4] Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2: 516.
[5] Wadia C, Albertus P, Srinivasan V. J. Power Sources, 2011, 196: 1593.
[6] Ceder G, Hautier G, Jain A, Ong S P. MRS Bulletin, 2011, 36: 185.
[7] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. Nat. Mater., 2007, 6: 749.
[8] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S, Nat. Mater., 2012, 11: 512.
[9] Berthelot R, Carlier D, Delmas C. Nat. Mater., 2011, 10: 74.
[10] Kim H, Kim D J, Seo D H, Yeom M S, Kang K, Kim D K, Jung Y. Chem. Mater., 2012, 24: 1205.
[11] D'Arienzo M, Ruffo R, Scotti R, Morazzoni F, Maria C M, Polizzi S. Phys. Chem. Chem. Phys., 2012, 14: 5945.
[12] Velikokhatnyi O I, Choi D, Kumta P N. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 128: 115.
[13] Zhao L, Ni J, Wang H, Gao L. RSC Advances, 2013, 3: 6650.
[14] Burba C M, Frech R. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2006, 65: 44.
[15] Gover R K B, Bryan A, Burns P, Barker J. Solid State Ionics, 2006, 177: 1495.
[16] Trad K, Carlier D, Croguennec L, Wattiaux A, Ben Amara M, Delmas C. Chem. Mater., 2010, 22: 5554.
[17] Liu Y, Xu Y, Han X, Pellegrinelli C, Zhu Y, Zhu Y, Wan J, Chung A C, Vaaland O, Wang C, Hu L. Nano Lett., 2012, 12: 5664.
[18] Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A, Wang C. J. Power Sources, 2013, 223: 62.
[19] Sun Q, Ren Q Q, Fu Z W. Electrochem. Commun., 2012, 23: 145.
[20] Gopalakrishnan J, Rangan K K. Chem. Mater., 1992, 4: 745.
[21] Plashnitsa L S, Kobayashi E, Noguchi Y, Okada S, Yamaki J I. J. Electrochem. Soc., 2010, 157: A536-A543.
[22] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-Gonzalez J, Rojo T. Energy Environ. Sci., 2012, 5: 5884.
[23] 吴振军(Wu Z J), 陈宗璋(Chen Z Z), 汤宏伟(Tang H H), 李素芳(Li S F). 电池(Battery Bimonthly), 2002, 32: 45.
[24] Zou L, Kang F, Zheng Y P, Shen W. Electrochim. Acta, 2009, 54: 3930.
[25] Asher R C. J. Inorg. Nucl. Chem., 1959, 10: 238.
[26] Ge P, Fouletier M. Solid State Ionics, 1988, 28/30: 1172.
[27] Alcántara R, Fernández Madrigal F J, Lavela P, Tirado J L, Jiménez Mateos J M, de Salazar C G, Stoyanova R, Zhecheva E. Carbon, 2000, 38: 1031.
[28] Alcántara R, Jiménez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[29] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 1271.
[30] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 4428.
[31] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv. Funct. Mater., 2011, 21: 3859.
[32] Alcantara R, Jimenez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[33] Alcantara R, Lavela P, Ortiz G F, Tirado J L. Electrochem. Solid-State Lett., 2005, 8: A222.
[34] Wenzel S, Hara T, Janek J, Adelhelm P. Energy Environ. Sci., 2011, 4: 3342.
[35] Cao Y, Xiao L, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L V, Yang Z, Liu J. Nano Lett., 2012, 12: 3783.
[36] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277.
[37] Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Electrochim. Acta, 2010, 55: 3909.
[38] Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G. J. Mater. Chem., 2011, 21: 5430.
[39] Li X, Geng D, Zhang Y, Meng X, Li R, Sun X. Electrochem. Commun., 2011, 13: 822.
[40] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4: 6337.
[41] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U. Adv. Mater., 2009, 21: 4726.
[42] Wang H G, Wu Z, Meng F L, Ma D L, Huang X L, Wang L M, Zhang X B. ChemSusChem, 2013, 6: 56.
[43] Wang Y X, Chou S L, Liu H K, Dou S X. Carbon, 2013, 57: 202.
[44] Winter M, Besenhard J O. Electrochim. Acta, 1999, 45: 31.
[45] Besenhard J O, Komenda P, Paxinos A, Wudy E, Josowicz M. Solid State Ionics, 1986, 18/19: 823.
[46] Chevrier V L, Ceder G. J. Electrochem. Soc., 2011, 158: A1011.
[47] Tran T T, Obrovac M N. J. Electrochem. Soc., 2011, 158: A1411.
[48] Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S. Electrochem. Commun., 2012, 21: 65.
[49] Matsuura Y, Ishikawa T, Murata W, Yabuuchi N, Kuze S, Komaba S. The Electrochemical Society, Honolulu PRiME 2012. 1849.
[50] Hong K, Nam D, Lim S, Kwon H. 224th ECS Meeting, San Francisco, 2013. 479.
[51] Mortazavi M, Deng J, Shenoy V B, Medhekar N V. J. Power Sources, 2013, 225: 207.
[52] Datta M K, Epur R, Saha P, Kadakia K, Park S K, Kuma P N. J. Power Sources, 2013, 225: 316.
[53] Xu Y, Zhu Y, Liu Y, Wang C. Adv. Energy Mater., 2013, 3: 128.
[54] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chem. Commun., 2012, 48: 7070.
[55] Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. ACS Nano, 2013, 7: 6378.
[56] Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. Chem. Commun., 2012, 48: 3321.
[57] Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. J. Mater. Chem. A, 2013, 1: 7181.
[58] Kim I T, Allcorn E, Manthiram A. Energy Technol., 2013, 1: 319.
[59] Koo B, Chattopadhyay S, Shibata T, Prakapenka V B, Johnson C S, Rajh T, Sheychenko E V. Chem. Mater., 2013, 25: 245.
[60] Tepavcevic S, Xiong H, Stamenkovic V R, Zuo X, Balasubramanian M, Prakapenka V B, Johnson C S, Rajh T. ACS Nano, 2012, 6: 530.
[61] Chen Z, Augustyn V, Jia X L, Xiao Q F, Dunn B, Lu Y F. ACS Nano, 2012, 6: 4319.
[62] Armstrong A R, Armstrong G, Canales J, García R, Bruce P G. Adv. Mater., 2005, 17: 862.
[63] Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J. ACS Nano, 2009, 3: 907.
[64] Tao T, Chen Y. Mater. Lett., 2013, 98: 112.
[65] Xiong H, Slater M D, Balasubramanian M, Johnson C S, Rajh T. J. Phys. Chem. Lett., 2011, 2: 2560.
[66] Hariharan S, Saravanan K, Balaya P. Electrochem. Commun., 2013, 31: 5.
[67] Winter M, Besenhard J, Spahr M. Adv. Mater., 1998, 10: 725.
[68] Su D, Wang C, Ahn H, Wang G. Phys. Chem. Chem. Phys, 2013, 15: 12543.
[69] Wang Y, Su D, Wang C, Wang G. Electrochem. Commun., 2013, 29: 8.
[70] Su D, Ahn H J, Wang G. Chem. Commun., 2013, 49: 3131.
[71] Park C M, Sohn H J. Adv. Mater., 2007, 19: 2465.
[72] Sun L Q, Li M J, Sun K, Yu S H, Wang R S, Xie H M. J. Phys. Chem. C, 2012, 116: 14772.
[73] Qian J, Qiao D, Ai X, Cao Y, Yang H. Chem. Commun., 2012, 48: 8931.
[74] 钱江锋(Qian J F). 武汉大学博士学位论文(Doctoral Dissertation of Wuhan University), 2012.
[75] Qian J, Wu X, Cao Y, Ai X, Yang H. Angew. Chem. Int. Ed., 2013, 52: 4633.
[76] Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. Adv. Mater., 2013, 25: 3045.
[77] Senguttuvan P, Rousse G, Vezin H, Tarascon J M, Palacin M R. Chem. Mater., 2013, 25: 2391.
[78] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1: 2653.
[79] Wang W, Yu C, Liu Y, Hou J, Zhu H, Jiao S. RSC Adv., 2013, 3: 1041.
[80] Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S. Nanoscale, 2013, 5: 594.
[81] Nakayama H, Nose M, Nobuhara K, Nakanishi S, Iba H. The Electrochemical Society, Honolulu PRiME 2012. 1855.
[82] Park S Ⅱ, Gocheva I, Okada S, Yamaki J I. J. Electrochem. Soc., 2011, 158: A1067.
[83] Woo S H, Park Y, Choi W Y, Choi N S, Nam S, Park B, Lee K T. J. Electrochem. Soc., 2012, 159: A2016.
[84] Zhao L, Pan H L, Hu Y S, Li H, Chen L Q. Chin. Phys. B, 2012, 21: 028201.
[85] Sun Y, Zhao L, Pan H L, Lu X, Gu L, Hu Y S, Li H, Armand M, Ikuhara Y, Chen L Q, Huang X J. Nat. Commun., 2013, 4: 1870.
[86] Park Y, Shin D S, Woo S H, Choi N S, Shin K H, Oh S M, Lee K T, Hong S Y. Adv. Mater., 2012, 24: 3562.
[87] Zhao L, Zhao J, Hu Y S, Li H, Zhou Z, Armand M, Chen L. Adv. Energy Mater., 2012, 2: 962.
[88] Zhu L, Niu Y, Cao Y, Lei A, Ai X, Yang H. Electrochim. Acta, 2012, 78: 27.

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[5] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[6] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[7] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[8] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[9] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[10] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[11] Huadong Zhang, Gongke Li*, Yufei Hu*. Applications of Halloysite Nanotubes in Separation and Enrichment [J]. Progress in Chemistry, 2018, 30(2/3): 198-205.
[12] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[13] Shiying Yang, Ao Zhang, Tengfei Ren, Yitao Zhang. Surface Mechanism of Carbon-Based Materials for Catalyzing Peroxide Degradation of Organic Pollutants in Water [J]. Progress in Chemistry, 2017, 29(5): 539-552.
[14] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[15] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.