中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 582-591 DOI: 10.7536/PC130914 Previous Articles   Next Articles

• Review •

Research Progress in Sodium-Ion Battery Materials for Energy Storage

Jin Yi1, Sun Xin2, Yu Yan2, Ding Chuxiong2, Chen Chunhua*2, Guan Yibiao1   

  1. 1. Department of Electrical Engineering and New Materials, China Electric Power Research Institute, Beijing 100192;
    2. Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by SGCC Science and Technology Programs (DG71-13-003)

PDF ( 3000 ) Cited
Export

EndNote

Ris

BibTeX

As a novel electrochemical power resource, sodium-ion battery (NIB) is advantageous in abundant resources for electrode materials, significantly low cost, relatively high specific capacity and efficiency. Therefore, NIB is regarded as a competitive candidate for large-scale energy storage usage and has potential for improving renewable energy resources grid-connected ability and power energy quality. Under this background, NIB is attracting extensive attentions worldwide and developing fast. In this review, we focus on the latest progress in the anode, cathode materials and electrolytes for NIB. After discussing the key technologies on materials of NIB, we attempt to give some suggestions on future research directions of NIB for relevant researchers and manufacturers in China.

Contents
1 Introduction
2 Anode materials for sodium-ion batteries
2.1 Carbon materials
2.2 Alloy materials
2.3 Metal oxide materials
3 Cathode materials for sodium-ion batteries
3.1 Metal oxide materials
3.2 Poly-anion materials
3.3 Fluoride materials
4 Electrolyte materials
5 Aqueous Na-ion batteries
6 Conclusions

CLC Number: 

[1] 曹兆汉(Cao Z H). 盐湖研究(Salt Lake Research), 1989, 1: 32.
[2] Ozawa K. Solid State Ionics, 1994, 69: 212.
[3] Stevens D A, Dahn J R. J. Electrochem. Soc., 2001, 148: A803.
[4] Divincenzo D P, Mele E J. Phys. Rev. B, 1985, 32: 2538.
[5] Jiang W J, Dahn J R. Electrochim. Acta, 2004, 49: 4599.
[6] Sangster J. J. Phase Equilib. Diff., 2007, 28: 571.
[7] Ge P, Fouletier M. Solid State Ionics, 1988, 28: 1172.
[8] Doeff M M, Ma Y, Visco S J, De Jonghe L C. J. Electrochem. Soc., 1993, 140: L169.
[9] Alcantara R, Mateos J M J, Tirado J L. J. Electrochem. Soc., 2002, 149: A201.
[10] Zhecheva E, Stoyanova R, Jiménez-Mateos J M. Alcántara R, Lavela P, Tirado J L, Carbon, 2002, 40: 2301.
[11] Alcántara R, Jiménez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[12] Thomas P, Ghanbaja J, Billaud D. Electrochim. Acta, 1999, 45: 423.
[13] Dubois M, Billaud D. Electrochim. Acta, 2002, 47: 4459.
[14] Dubois M, Naji A, Billaud D. Electrochim. Acta, 2001, 46: 4301.
[15] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 4428.
[16] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv. Funct. Mater., 2011, 21: 3859.
[17] Alcantara R, Lavela P, Ortiz G F, Tirado J L. Electrochem. Solid-State Lett., 2005, 8: A222.
[18] Matsushita T, Ishii Y, Kawasaki S. Mater. Express, 2013, 3(1): 30.
[19] Yang S, Liu H K, Dou S X. Carbon, 2013, 57: 202.
[20] Chevrier V L, Ceder G. J. Electrochem. Soc., 2011, 158: A1011.
[21] Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J, Chem. Commun., 2012, 48: 3321.
[22] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chem. Commun., 2012, 48: 7070.
[23] Alcántara R, Jaraba M, Lavela P, Tirado J L. Chem. Mater., 2002, 14: 2847.
[24] Zhao L, Pan H L, Hu Y S, Li H, Chen L Q. Chin. Phys. B, 2012, 21:028201.
[25] Senguttuvan P, Rousse G l, Seznec V, Tarascon J M, Palacín M R. Chem. Mater., 2011, 23: 4109.
[26] Xiong H M, Slater D, Balasubramanian M, Johnson C S, Rajh T. J. Phys. Chem. Lett., 2011, 2: 2560.
[27] Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S. Nanoscale, 2013, 5 (2): 594.
[28] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1 (7): 2653.
[29] Senguttuvan P, Rousse G, Seznec V, Tarascon, J M, Palacín M R. Chem. Mater., 2011, 23 (18): 4109.
[30] Wang Y S, Yu X Q, Xu S, Bai J M, Xiao R J, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Nature Commun., 2013, 4: 2365.
[31] Sun Q, Ren Q Q, Li H, Fu Z W. Electrochem. Commun., 2011, 13: 1462.
[32] Zhang W M, Wu X L, Hu J S, Guo Y G, Wan L J. Adv. Funct. Mater., 2008, 18: 3941.
[33] Ma X H, Feng X Y, Song C, Zou B K, Ding C X, Yu Y, Chen C H. Electrochim. Acta, 2013, 93: 131.
[34] Wang S, Zhang J, Chen C. J. Power Sources, 2010, 195: 5379.
[35] Muraliganth T, Vadivel M A, Manthiram A. Chem. Commun., 2009, 7360.
[36] Liu H, Wang G, Wang J, Wexler D. Electrochem. Commun., 2008, 10: 1879.
[37] Cui Z M, Jiang L Y, Song W G, Guo Y G. Chem. Mater., 2009, 21: 1162.
[38] Ren S, Prakash R, Wang D, Chakravadhanula V S K, Fichtner M. Chem. Sus. Chem., 2012, 5: 1397.
[39] PiaoY, Kim H S, Sung Y E, Hyeon T. Chem. Commun., 2010, 46: 118.
[40] Kang E, Jung Y S, Cavanagh A S, Kim GH, George S M, Dillon A C, Kim J K, Lee J. Adv. Funct. Mater., 2011, 21: 2430.
[41] Xiong Q Q, Tu J P, Lu Y, Chen J, Yu Y X, Qiao Y Q, Wang X L, Gu C D. J. Phys. Chem. C, 2012, 116: 6495.
[42] Hariharan S, Saravanan K, Ramar V, Balaya P. Phys. Chem. Chem. Phys., 2013, 15: 2945.
[43] Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C. Electrochem. Solid-State Lett., 2011, 14: A75.
[44] Delmas C, Braconnier J J, Fouassier C, Hagenmuller P. SolidState Ionics, 1981, 3/4: 165.
[45] Braconnier J J, Delmas C, Hagenmuller P. Mater. Res. Bull., 1982, 17: 993.
[46] Sauvage F, Laffont L, Tarascon J M, Baudrin E. Inorg. Chem., 2007, 46: 3289.
[47] Komaba S, Nakayama T, Ogata A, Shimizu T, Takei C, Takada S, Hokura A, Nakai I. ECS Trans., 2009, 16: 43.
[48] Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N. Electrochem. Commun., 2010, 12: 355.
[49] Ding J J, Zhou Y N, Sun Q, Fu Z W. Electrochem. Commun., 2012, 22: 85.
[50] MakimuraY, Ohzuku T. J. Power Sources, 2003, 156: 119.
[51] Yabuuchi N, Lu Y C, Mansour A N, Chen S, Yang S H. J. Electrochem. Soc., 2011, 158: A192.
[52] Komaba S, Nakayama T, Ogata A, Shimizu T, Takei C, Takada S, Nakai I. ECS Transactions, 2009, 16(42): 43.
[53] Kim D, Kang S H, Slater M, Rood S, Vaughey J T, Karan N, Balasubramanian M, Johnson C S. Adv. Energy Mater., 2011, 1: 333.
[54] Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S, Electrochem. Commun., 2012, 18: 66.
[55] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nature Mater., 2012,11: 512.
[56] Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z, Liu J. Adv. Mater., 2011, 23: 3155.
[57] Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J B, Morcrette M, Tarascon J M, Masquelier C. J. Electrochem. Soc., 2005, 152: A913.
[58] Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A. J. Power Sources, 2001, 97/98: 430.
[59] Padhi A K, Nanjundaswamy K S, Masquelier C, Okada S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1609.
[60] Teng F, Hu Z, Ma X H, Zhang L C, Ding C X, Yu Y, Chen C H. Electrochim. Acta, 2013, 91: 43.
[61] BarkerJ, Saidi M Y, SwoyerJ L. Electrochem. Solid-State Lett., 2003, 6: A1.
[62] Sun Q, Ren Q Q, Fu Z W. Electrochem. Commun. , 2012, 23: 145.
[63] Jian Z, Zhao L, Pan H, Hu Y S, Li H, Chen W, Chen L Q. Electrochem. Commun., 2012, 14: 86.
[64] Moreau P, Guyomard D, Gaubicher J, Boucher F. Chem. Mater., 2010, 22: 4126.
[65] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. Nature Mater., 2007, 6(10): 749.
[66] Yamada Y, Doi T, Tanaka I, Okada S, Yamaki J I. J. Power Sources, 2011, 198: 389.
[67] Wen J W, Yu Y, Chen C H. Mater. Express, 2012, 2: 197.
[68] Zhang S S. J. Power Sources, 2002, 162: 1379.
[69] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[70] Yang P, Tarascon J M. Nature Mater., 2012, 11: 560.
[71] Xia X, DahnJ R. J. Electrochem. Soc., 2012, 10: 1149.
[72] Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacin M R. Energy Environ. Sci., 2012, 5: 8572.
[73] Ding J J, Zhou Y N, Sun Q, Yu X Q, Yang X Q, Fu Z W. Electrochim. Acta, 2013, 87: 388.
[74] Bohnke O, Ronchetti S, Mazza D. Solid State Ionics, 1999, 122: 127.
[75] Li Z, Young D, Xiang K, Carter W C, Chiang Y M. Adv. Energy Mater., 2013, 3: 290.
[76] Wessells C D, Peddada S V, Huggins R A, Cui Y. Nano Lett., 2011, 11: 5421.
[77] Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. J. Electrochem. Soc., 2011, 159: A98.
[78] Wessells C D, McDowell M T, Peddada S V, Pasta M, Huggins R A, Cui Y. ACS Nano, 2012, 6: 1688.
[79] Kim S W, Seo D H, Ma X, Ceder G, Kang K. Adv. Energy Mater., 2012, 2: 710.

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[6] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[7] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[8] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[9] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[10] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[11] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[12] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[13] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[14] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[15] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.