中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 657-664 DOI: 10.7536/PC130859 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Electrochemical Biosensors for Aflatoxin Analysis

Li Qingchuan, Cao Lixin*, Hu Haifeng, Wang Kai, Yan Peisheng   

  1. School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21273056)

PDF ( 948 ) Cited
Export

EndNote

Ris

BibTeX

Aflatoxin is a kind of biotoxins with acute toxicity and strong carcinogenicity. Quick and accurate analysis is one of the most effective methods to minimize or avoid its hazard. Electrochemical biosensor has drawn widespread attention of domestic and foreign researchers for aflatoxin analysis,due to its rapidity,high degree of sensitivity and specificity, combined with its easiness to be miniaturized. So far, immunosensor, enzyme sensor, and DNA biosensor have been applied to electrochemical biosensing of aflatoxin. In this paper, the research progress of different kinds of sensors for aflatoxin analysis is reviewed. The importance of new materials and advanced technologies for immunoassay of aflatoxin is particularly highlighted. Main problems and trends in electrochemical biosensing of aflatoxin are discussed and prospected.

Contents
1 Introduction
2 Electrochemical immunosensor
2.1 Nanomaterials
2.2 Ionic liquids
2.3 Conducting polymers
2.4 Others
3 Electrochemical enzyme sensor
4 Electrochemical DNA sensor
5 Conclusion and outlook

CLC Number: 

[1] Bakirdere S, Bora S, Bakirdere E G, Aydin F, Arslan Y, Komesli O T, Aydin I, Yildirim E. Cent. Eur. J. Chem., 2012, 10: 675.
[2] Henry S H, Bosch F X, Troxell T C, Bolger P M. Science, 1999, 286: 2453.
[3] Williams J H, Phillips T D, Jolly P E, Stiles J K, Jolly C M, Aggarwal D. Am. J. Clin. Nutr., 2004, 80: 1106.
[4] Gnonlonfin G, Hell K, Adjovi Y, Fandohan P, Koudande D O, Mensah G A, Sanni A, Brimer L. Crit. Rev. Food Sci., 2013, 53: 349.
[5] 蒿艳蓉(Hao Y R), 苏建家(Su J J). 现代预防医学(Modern Preventive Medicine), 2009, 36(1): 146.
[6] 孙桂菊(Sun G J), 钱耕荪(Qian G S), 金锡鹏(Jin X P), 陈建国(Chen J G), 贺霞(He X), 王少康(Wang S K), 蒋兆坤(Jiang Z K), 王加生(Wang J S). 东南大学学报(医学版)(Journal of Southeast University (Medical Science Edition), 2002, 21(1): 118.
[7] 闫培生(Yan P S), 曹立新(Cao L X), 王凯(Wang K), 王琢(Wang Z). 中国农业科技导报(Journal of Agricultural Science and Technology), 2008, 10(6): 89.
[8] 马良(Ma L), 李培武(Li P W), 张文(Zhang W). 分析测试学报(Journal of Instrumental Analysis), 2007, 26(6): 774.
[9] 江湖(Jiang H), 熊勇华(Xiong Y H), 许杨(Xu Y). 卫生研究(Journal of Hygiene Research), 2005, 34(2): 252.
[10] Arredondo M, Stoytcheva M, Zlatev R, Gochev V. Mini-Rev. Med. Chem., 2012, 12: 1301.
[11] Wu N N, Cao L X, Yan P S, Wang M H. Advanced Materials Research, 2011, 322: 385.
[12] 计结胜(Ji J S). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology ), 2010.
[13] Buenger D, Topuz F, Groll J. Prog. Polym. Sci., 2012, 37: 1678.
[14] Ammida N H S, Micheli L, Palleschi G. Anal. Chim. Acta, 2004, 520: 159.
[15] Badea M, Micheli L, Messia M C, Candigliota T, Marconi E, Mottram T, Velasco-Garcia M, Moscone D, Palleschi G. Anal. Chim. Acta, 2004, 520: 141.
[16] Ammida N, Micheli L, Piermarini S, Moscone D, Palleschi G. Anal. Lett., 2006, 39: 1559.
[17] Larou E, Yiakoumettis I, Kaltsas G, Petropoulos A, Skandamis P, Kintzios S. Food Control, 2013, 29: 208.
[18] Rameil S, Schubert P, Grundmann P, Dietrich R, Märtlbauer E. Anal. Chim. Acta, 2010, 661: 122.
[19] Liu Y, Qin Z, Wu X, Jiang H. Biochem. Eng. J., 2006, 32: 211.
[20] Li Z J, Wang Z Y, Sun X L, Fang Y J, Chen P P. Talanta, 2010, 80: 1632.
[21] Vig A, Munoz-Berbel X, Radoi A, Cortina-Puig M, Marty J L. Talanta, 2009, 80: 942.
[22] 孙秀兰(Sun X L), 汪忠云(Wang Z Y), 方银军(Fang Y J), 陈佩佩(Chen P P), 李在均(Li Z J). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 38(2): 245.
[23] Tan Y, Chu X, Shen G, Yu R. Anal. Biochem., 2009, 387: 82.
[24] Vig A, Radoi A, Muoz-Berbel X, Gyemant G, Marty J. Sensor. Actuat. B-Chem., 2009, 138: 214.
[25] Pemberton R M, Pittson R, Biddle N, Drago G A, Hart J P. Anal. Lett., 2006, 39: 1573.
[26] Masoomi L, Sadeghi O, Banitaba M H, Shahrjerdi A, Davarani S S H. Sensor. Actuat. B-Chem., 2013, 177: 1122.
[27] Kalita P, Singh J, Singh M K, Solanki P R, Sumana G, Malhotra B D. Appl. Phys. Lett., 2012, 100: 0937029.
[28] Owino J, Arotiba O A, Hendricks N, Songa E A, Jahed N, Waryo T T, Ngece R F, Baker P, Iwuoha E I. Sensors, 2008, 8: 8262.
[29] Owino J, Ignaszak A, Al-Ahmed A, Baker P, Alemu H, Ngila J C, Iwuoha E I. Anal. Bioanal. Chem., 2007, 388: 1069.
[30] Lin D J, Wu J, Wang M, Yan F, Ju H X. Anal. Chem., 2012, 84: 3662.
[31] Zhou J, Lai W Q, Zhuang J Y, Tang J, Tang D P. ACS Appl. Mater. Inter., 2013, 5: 2773.
[32] Gao W C, Dong H F, Lei J P, Ji H X, Ju H X. Chem. Commun., 2011, 47: 5220.
[33] Lai G S, Wu J, Ju H X, Yan F. Adv. Funct. Mater., 2011, 21: 2938.
[34] Yuan L, Xu L L, Liu S Q. Anal. Chem., 2012, 84: 10737.
[35] Liu Q T, Boyd B J. Analyst, 2013, 138: 391.
[36] Wang X D, Chen L J, Su X R, Ai S Y. Biosens. Bioelectron., 2013, 47: 171.
[37] Zhou L T, Li R Y, Li Z J, Xia Q F, Fang Y J, Liu J K. Sensor. Actuat. B-Chem., 2012, 174: 359.
[38] Sharma A, Matharu Z, Sumana G, Solanki P R, Kim C G, Malhotra B D. Thin Solid Films, 2010, 519: 1213.
[39] Singh C, Srivastava S, Ali M A, Gupta T K, Sumana G, Srivastava A, Mathur R B, Malhotra B D. Sensor. Actuat. B-Chem., 2013, 185: 258.
[40] Srivastava S, Kumar V, Ali M A, Solanki P R, Srivastava A, Sumana G, Saxena P S, Joshi A G, Malhotra B D. Nanoscale, 2013, 5: 3043.
[41] Li J P, Li S H, Yang C F. Electroanal., 2012, 24: 2213.
[42] Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X Y. ACS Nano, 2012, 6: 6546.
[43] Piermarini S, Volpe G, Micheli L, Moscone D, Palleschi G. Food Control, 2009, 20: 371.
[44] Paniel N, Radoi A, Marty J L. Sensors, 2010, 10: 9439.
[45] Tang D P, Zhong Z Y, Niessner R, Knopp D. Analyst, 2009, 134: 1554.
[46] Soleymani L, Fang Z C, Sargent E H, Kelley S O. Nat. Nanotechnol., 2009, 4: 844.
[47] de la Escosura-Muniz A, Merkoci A. ACS Nano, 2012, 6: 7556.
[48] Ongaro M, Ugo P. Anal. Bioanal. Chem., 2013, 405: 3715.
[49] Varshney M, Li Y B. Biosens. Bioelectron., 2009, 24: 2951.
[50] Fan Z Y, Ho J C, Takahashi T, Yerushalmi R, Takei K, Ford A C, Chueh Y L, Javey A. Adv. Mater., 2009, 21: 3730.
[51] 曹立新(Cao L X), 闫培生(Yan P S), 孙克宁(Sun K N), KirK D W. 化学进展(Progress in Chemistry), 2008, 20(9): 1276.
[52] Cao L X, Yan P S, Sun K, Kirk D W. Electroanal., 2009, 21: 1183.
[53] Cao L X, Yan P S, Sun K N, Wirk D W. Electrochim. Acta, 2008, 53: 8144.
[54] Cao L, Yan P, Sun K, Kirk W D. Chinese J. Chem., 2007, 25: 1754.
[55] Ghosh H, Roychaudhuri C. 2012 Sixth International Conference on Sensing Technology (ICST 2012). Kolkata: IEEE, 2012. 688.
[56] Ghosh H, Roychaudhuri C. Appl. Phys. Lett., 2013, 102: 243701.
[57] Parker C O, Lanyon Y H, Manning M, Arrigan D, Tothill I E. Anal. Chem., 2009, 81: 5291.
[58] Shiddiky M, Torriero A. Biosens. Bioelectron., 2011, 26: 1775.
[59] Hasanzadeh M, Shadjou N, Eskandani M, de la Guardia M. Trac-Trend. Anal. Chem., 2012, 41: 58.
[60] 闫燕(Lv Y), 杨启炜(Yang Q W), 邢华斌(Xing H B), 苏宝根(Su B G), 任其龙(Ren Q L). 化学进展(Progress in Chemistry), 2012, 24(5): 659.
[61] Sun A L, Qi Q A, Dong Z L, Liang K Z. Sens. & Instrumen. Food Qual., 2008, 2: 43.
[62] Cosnier S, Holzinger M. Chem. Soc. Rev., 2011, 40: 2146.
[63] Ates M. Mat. Sci. Eng. C-Mater., 2013, 33: 1853.
[64] Dinçkaya E, K?n?k Ö, Sezgintürk M K, Altu D? Ç, Akkoca A. Artif. Cell., Blood Sub. Biotech., 2012, 40: 385.
[65] Bacher G, Pal S, Kanungo L, Bhand S. Sensor. Actuat. B-Chem., 2012, 168: 223.
[66] Bacher G, Kanungo L, Bhand S. 2012 Sixth International Conference on Sensing Technology (ICST 2012). Kolkata: IEEE, 2012. 29.
[67] Pohanka M, Malir F, Roubal T, Kuca K. Anal. Lett., 2008, 41: 2344.
[68] Piermarini S, Volpe G, Ricci F, Micheli L, Moscone D, Palleschi G, Fuhrer M, Krska R, Baumgartner S. Anal. Lett., 2007, 40: 1333.
[69] Piermarini S, Micheli L, Ammida N H S, Palleschi G, Moscone D. Biosens. Bioelectron., 2007, 22: 1434.
[70] Micheli L, Grecco R, Badea M, Moscone D, Palleschi G. Biosens. Bioelectron., 2005, 21: 588.
[71] Neagu D, Perrino S, Micheli L, Palleschi G, Moscone D. Int. Dairy J., 2009, 19: 753.
[72] Parker C O, Tothill I E. Biosens. Bioelectron., 2009, 24: 2452.
[73] Lillehoj P B, Huang M, Truong N, Ho C. Lab Chip, 2013, 13: 2950.
[74] Tang C K, Vaze A, Rusling J F. Lab Chip, 2012, 12: 281.
[75] Kobayashi N, Oyama H. Analyst, 2011, 136: 642.
[76] Techera A G, Kim H J, Gee S J, Last J A, Hammock B D, Sapienza G G. Anal. Chem., 2007, 79: 9191.
[77] Clark L C J, Lyons C. Ann. N. Y. Acad. Sci., 1962, 102: 29.
[78] 刘大岭(Liu D L), 沈奕(Shen Y), 张静(Zhang J), 姚冬生(Yao D S). 中国生物工程杂志(China Biotechnology), 2008, 28(3): 44.
[79] Li S C, Chen J H, Cao H, Yao D S, Liu D L. Food Control, 2011, 22: 43.
[80] Ben Rejeb I, Arduini F, Arvinte A, Amine A, Gargouri M, Micheli L, Bala C, Moscone D, Palleschi G. Biosens. Bioelectron., 2009, 24: 1962.
[81] Hansmann T, Sanson B, Stojan J, Weik M, Marty J, Fournier D. Biosens. Bioelectron., 2009, 24: 2119.
[82] Zhou M, Dong S J. Accounts Chem. Res., 2011, 44: 1232.
[83] Du Y, Li B L, Wang E K. Accounts Chem. Res., 2013, 46: 203.
[84] Siontorou C G, Nikolelis D P, Miernik A, Krull U J. Electrochim. Acta, 1998, 43: 3611.
[85] Mascini M, Palchetti I, Marrazza G. Fresen. J. Anal. Chem., 2001, 369: 15.
[86] Wang J S, Groopman J D. Mutat. Res. -Fund. Mol. M., 1999, 424: 167.
[87] Eaton D L, Gallagher E P. Annu. Rev. Pharmacol., 1994, 34: 135.
[88] Banitaba M H, Davarani S, Mehdinia A. Anal. Biochem., 2011, 411: 218.
[89] Dinçkaya E, K?n?k Ö, Sezgintürk M K, Altu Ç, Akkoca A. Biosens. Bioelectron., 2011, 26: 3806.
[90] Nguyen B H, Tran L D, Do Q P, Nguyen H L, Tran N H, Nguyen P X. Mat. Sci. Eng. C-Mater., 2013, 33: 2229.

[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[13] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[14] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[15] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.