中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC130857 Previous Articles   Next Articles

• Review •

NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite

Chen Yanping1, Cheng Dang-guo1, Chen Fengqiu*1,2, Zhan Xiaoli1   

  1. 1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No.20806070)

PDF ( 2983 ) Cited
Export

EndNote

Ris

BibTeX

More attention to Cu-ZSM-5 zeolite has been paid due to its excellent catalytic activities in removal of NO, and the process it concerned is non-polluting. In this review, the reaction mechanism and catalyst improvement of NO decomposition, selective catalytic reduction of NO with ammonia (NH3-SCR-NO) and with hydrocarbons (CH-SCR-NO) over Cu-ZSM-5 zeolite are summarized. The possible developing orientations in the field of removal of NO over Cu-ZSM-5 zeolite are also prospected. Direct catalytic decomposition of NO to N2 and O2 has been recognized as the most attractive method for removal of NO, which involves redox process of Cu+ and formation of N2O. NH3-SCR-NO reaction is one of the most efficient and widely-used techniques. Firstly, NO is oxidized to NO2, and then NH4NO3 is formed from the reaction of NO2 and NH3. Finally, NH4NO3 reacts with NO generating N2. CH-SCR-NO reaction over Cu-ZSM-5 zeolite is an efficient way for the treatment of automobile-exhaust pollution. The formation of key intermediates such as isocyanate and cyanide species is a necessary process during CH-SCR-NO reaction. However, Cu-ZSM-5 zeolite suffers from poor hydrothermal stability and high sulfur dioxide (SO2) poisoning property which have suppressed its industrial applications. Introduction of a second metal and fabrication of monolithic catalyst can significantly improve the catalytic performance of Cu-ZSM-5 zeolite. The systematic understanding of reaction mechanism is beneficial to the improvement of Cu-ZSM-5 zeolite and also important for the design of novel,efficient,environmentally-friendly catalysts.

Contents
1 Introduction
2 NO decomposition over Cu-ZSM-5 zeolite
2.1 Reaction mechanism of NO decomposition
2.2 Improvement of Cu-ZSM-5 zeolite for NO decomposition
3 NH3-SCR-NO reaction over Cu-ZSM-5 zeolite
3.1 Reaction mechanism of NH3-SCR-NO reaction
3.2 Improvement of Cu-ZSM-5 zeolite for NH3-SCR-NO reaction
4 CH-SCR-NO reaction over Cu-ZSM-5 zeolite
4.1 Reaction mechanism of CH-SCR-NO reaction
4.2 Choice of reductants of hydrocarbon
4.3 Improvement of Cu-ZSM-5 zeolite for CH-SCR-NO reaction
5 Conclusion and prospects

CLC Number: 

[1] Aylor A W, Larsen S C, Reimer J A, Bell A T. J. Catal., 1995, 157: 592.
[2] Cheng D G, Chen F Q, Zhan X L. Appl. Catal. A, 2012, 435/436: 27.
[3] 赵晓旭(Zhao X X), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 催化学报(Chinese Journal of Catalysis), 2010, 31(1): 68.
[4] Li L, Guan N. Micropor. Mesopor. Mat., 2009, 117: 450.
[5] 陈艳平(Chen Y P), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2013, 25(12): 2011.
[6] Ingelsten H H, Palmqvist A, Skoglundh M. J. Phys. Chem. B, 2006, 110: 18392.
[7] Hall W K, Valyon J. J. Catal., 1992, 15: 311.
[8] Glick H S, Klein J J, Squire W. J. Chem. Phys., 1957, 27: 850.
[9] Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S. J. Chem. Soc., Chem. Commun., 1986, 1272.
[10] Shelef M. Catal. Lett., 1992, 15: 305.
[11] Valyon J, Hall W K. J. Phys. Chem., 1993, 97: 1204.
[12] Wichterlova B, Dedecek J, Vondrová A, Klier K. J. Catal., 1997, 169: 194.
[13] Groothaert M H, Lievens K, Leeman H, Weckhuysen B M, Schoonheydt R A. J. Catal., 2003, 220: 500.
[14] Děde?ek J, Wichterlová B. J. Phys. Chem. B, 1997, 101: 10233.
[15] Schay Z, Knözinger H, Guczi L, Pal-Borbely G. Appl. Catal. B, 1998, 18: 263.
[16] Park S K, Kurshev V, Luan Z, Lee C W, Kevan L. Micropor. Mesopor. Mat., 2000, 38: 255.
[17] Morpurgo S, Moretti G, Bossa M. J. Mol. Catal. A: Chem., 2012, 358: 134.
[18] Morpurgo S, Moretti G, Bossa M. Theor. Chem. Acc., 2012, 131: 1.
[19] Izquierdo R, Rodríguez L J, A ?瘙 塀 ez R, Sierraalta A. J. Mol. Catal. A: Chem., 2011, 348: 55.
[20] Zakharov I I, Ismagilov Z R, Ruzankin S P, Anufrienko V F, Yashnik S A, Zakharova O I. J. Phys. Chem. C, 2007, 111: 3080.
[21] Lisi L, Pirone R, Russo G, Santamaria N, Stanzione V. Appl. Catal. A, 2011, 413/414: 117.
[22] Olsson L, Sjövall H, Blint R J. Appl. Catal. B, 2009, 87: 200.
[23] Tajima N, Hashimoto M, Toyama F, El-Nahas A M, Hirao K. Phys. Chem. Chem. Phys., 1999, 1: 3823.
[24] Fierro G, Ferraris G, Moretti G. Appl. Catal. B, 2009, 91: 499.
[25] Zhang Y, Flytzani-Stephanopoulos M. J. Catal., 1996, 164: 131.
[26] 曲虹霞(Qu H X), 钟秦(Zhong Q), 邓选英(Deng X Y). 中国环境科学(China Environmental Science), 2006, 26(4): 395.
[27] Li Z, Flytzani-Stephanopoulos M. Appl. Catal. A., 1997, 165: 15.
[28] Pârvulescu V I, Oelker P, Grange P, Delmon B. Appl. Catal. B, 1998, 16: 1.
[29] Pârvulescu V I, Grange P, Delmon B. Appl. Catal. B, 2001, 33: 223.
[30] Pârvulescu V I, Centeno M A, Dupont O, Bârjega R, Ganea R, Delmon B, Grange P. Catal. Today, 1999, 54: 507.
[31] 单学蕾(Shan X L), 关乃佳(Guan N J), 曾翔(Zeng X), 陈继新(Chen J X), 项寿鹤(Xiang S H), Illgen U, Baerns M. 催化学报(Chinese Journal of Catalysis), 2001, 22(3): 242.
[32] Kustova M Y, Rasmussen S B, Kustov A L, Christensen C H. Appl. Catal. B, 2006, 67: 60.
[33] Chen F, Ma L, Cheng D, Zhan X. Catal. Commun., 2012, 18: 110.
[34] 孙亮(Sun L), 许悠佳(Xu Y J), 曹青青(Cao Q Q), 胡冰清(Hu B Q), 王超(Wang C), 荆国华(Xing G H). 化学进展(Progress in Chemistry), 2010, 22(10): 1882.
[35] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 贺泓(He H). 化学进展(Progress in Chemistry), 2012, 24(4): 445.
[36] Olsson L, Sjövall H, Blint R J. Appl. Catal. B, 2008, 81: 203.
[37] Metkar P S, Harold M P, Balakotaiah V. Appl. Catal. B, 2012, 111/112: 67.
[38] Choi E, Nam I, Kim Y G. J. Catal., 1996, 161: 597.
[39] Komatsu T, Nunokawa M, Moon I S, Takahara T, Namba S, Yashima T. J. Catal., 1994, 148: 427.
[40] Eng J, Bartholomew C H. J. Catal., 1997, 171: 27.
[41] Sjövall H, Blint R J, Olsson L. Appl. Catal. B, 2009, 92: 138.
[42] Stevenson S A, Vartuli J C, Brooks C F. J. Catal., 2000, 190: 228.
[43] Devadas M, Kröcher O, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L. Appl. Catal. B, 2006, 67: 187.
[44] Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B. Appl. Catal. B, 2007, 70: 80.
[45] Seo C K, Choi B, Kim H, Lee C H, Lee C B. Chem. Eng. J., 2012, 191: 331.
[46] Sjövall H, Olsson L, Fridell E, Blint R J. Appl. Catal. B, 2006, 64: 180.
[47] Park J, Park H J, Baik J H, Nam I, Shin C, Lee J, Cho B K, Oh S H. J. Catal., 2006, 240: 47.
[48] Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H. Appl. Catal. B, 2010, 101: 61.
[49] Li Z, Li D, Huang W, Xie K. J. Nat. Gas Chem., 2005, 14: 115.
[50] Ma A, Muhler M, Grünert W. Appl. Catal. B, 2000, 27: 37.
[51] Wang J, Tian D, Han L, Chang L, Bao W. T. Nonferr. Metal. Soc., 2011, 21: 353.
[52] 张秋林(Zhang Q L), 邱春天(Qiu C T), 徐海迪(Xu H D), 林涛(Lin T), 龚茂初(Gong M C), 陈耀强(Chen Y Q). 催化学报(Chinese Journal of Catalysis), 2010, 31: 1411.
[53] Metkar P S, Balakotaiah V, Harold M P. Chem. Eng. Sci., 2011, 66: 5192.
[54] Iwamoto M, Yahiro H, Yuu Y. Shokubai, 1990, 32: 430.
[55] Held W, Koening A, Richter T, Puppe L. SAE Paper 900496, 1990, SP-810: 13.
[56] Jia M J, Zhang W X, Wu T H. J. Mol. Catal. A: Chem., 2002, 185: 151.
[57] Yashnik S A, Ismagilov Z R, Anufrienko V F. Catal. Today, 2005, 110: 310.
[58] Krivoruchko O P, Larina T V, Shutilov R A, Gavrilov V Y, Yashnik S A, Sazonov V A, Molina I Y, Ismagilov Z R. Appl. Catal. B, 2011, 103: 1.
[59] Korhonen S T, Fickel D W, Lobo R F, Weckhuysen B M, Beale A M. Chem. Commun., 2010, 47: 800.
[60] ?apek L, Vradman L, Sazama P, Herskowitz M, Wichterlová B, Zukerman R, Brosius R, Martens J A. Appl. Catal. B, 2007, 70: 53.
[61] Děde?ek J, ?apek L, Wichterlová B. Appl. Catal. A, 2006, 307: 156.
[62] Ingelsten H H, Hildesson Å, Fridell E, Skoglundh M. J. Mol. Catal. A, 2004, 209: 199.
[63] Ingelsten H H, Skoglundh M. Catal. Lett., 2006, 106: 15.
[64] Ingelsten H H, Zhao D, Palmqvist A, Skoglundh M. J. Catal., 2005, 232: 68.
[65] Sadykov V A, Lunin V V, Matyshak V A, Paukshtis E A, Rozovskii A Y, Bulgakov N N, Ross J R H. Kinet. Catal., 2003, 44: 379.
[66] Sadykov V A, Baron S L, Matyshak V A, Alikina G M, Bunina R V, Rozovskii A Ya, Luniv V V, Lunina E V, Kharlanov A N, Ivanova A S, Veniaminov S A. Catal. Lett., 1996, 37: 157.
[67] Yumura T, Hasegawa S, Itadani A, Kobayashi H, Kuroda Y. Materials, 2010, 3: 2516.
[68] Cho B K, Yie J E, Rahmoeller K M. J. Catal., 1995, 157: 14.
[69] Centi G, Perathoner S. Catal. Today, 1996, 29: 117.
[70] Liu Z, Woo S I. Catal. Rev., 2006, 48: 43.
[71] Cant N W, Liu I O Y. Catal. Today, 2000, 63: 133.
[72] Cant N W, Chambers D C, Cowan A D, Liu I O Y, Satsuma A. Top. Catal., 2000, 10: 13.
[73] Satsuma A, Cowan A D, Cant N W, Trimm D L. J. Catal., 1999, 181: 165.
[74] Poignant F, Freysz J L, Daturi M, Saussey J. Catal. Today, 2001, 70: 197.
[75] Vergne S, Berreghis A, Tantet J, Canaff C, Magnoux P, Guisnet M, Davias N, Noirot R. Appl. Catal. B, 1998, 18: 37.
[76] Liu I O Y, Cant N W, Haynes B S, Nelson P F. J. Catal., 2001, 203: 487.
[77] Schay Z, Guczi L, Beck A, Nagy I, Samuel V, Mirajkar S P, Ramaswamy A V, Pál-Borbély G. Catal. Today, 2002, 75: 393.
[78] Wang X, Xu Y, Yu S, Wang C. Catal. Lett., 2005, 103: 101.
[79] Yu Q, Wang X, Xing N, Yang H, Zhang S. J. Catal., 2007, 245: 124.
[80] Shimizu K, Maeshima H, Satsuma A, Hattori T. Appl. Catal. B, 1998, 18: 163.
[81] ?apek L, Novoveská K, Sobalík Z, Wichterlová B, Cider L, Jobson E. Appl. Catal. B, 2005, 60: 201.
[82] Janas J, Rojek W, Shishido T, Dzwigaj S. Appl. Catal. B, 2012, 123/124: 134.
[83] Janas J, Gurgul J, Socha R P, Dzwigaj S. Appl. Catal. B, 2009, 91: 217.
[84] Janas J, Gurgul J, Socha R P, Shishido T, Che M, Dzwigaj S. Appl. Catal. B, 2009, 91: 113.
[85] Erkfeldt S, Palmqvist A, Jobson E. Top. Catal., 2007, 42: 149.
[86] Erkfeldt S, Palmqvist A, Petersson M. Appl. Catal. B, 2011, 102: 547.
[87] Komvokis V G, Iliopoulou E F, Vasalos I A, Triantafyllidis K S, Marshall C L. Appl. Catal. A, 2007, 325: 345.
[88] Landi G, Lisi L, Pirone R, Russo G, Tortorelli M. Catal. Today, 2012, 191: 138.
[89] Yashnik S A, Salnikov A V, Vasenin N T, Anufrienko V F, Ismagilov Z R. Catal. Today, 2012, 197: 214.
[90] Neylon M K, Castagnola M J, Castagnola N B, Marshall C L. Catal. Today, 2004, 96: 53.
[91] Castagnola M J, Neylon M K, Marshall C L. Catal. Today, 2004, 96: 61.
[92] Sowade T, Liese T, Schmidt C, Schütze F W, Yu X, Berndt H, Grünert W. J. Catal., 2004, 225: 105.
[93] 李兰冬(Li L D), 章福祥(Zhang F X), 关乃佳(Guan N J), 冯洪庆(Feng H Q), 刘德新(Liu D X). 催化学报(Chinese Journal of Catalysis), 2006, 27(1): 41.
[94] Li L, Zhang F, Guan N, Richter M, Fricke R. Catal. Commun., 2007, 8: 583.
[95] Öhman L O, Ganemi B, Björnbom E, Rahkamaa K, Keiski R L, Paul J. Mater. Chem. Phys., 2002, 73: 263.

[1] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide* [J]. Progress in Chemistry, 0, (): 201111-201111.
[2] . Application of Nanotechnology for Virus Inactivation in Water: Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 0, (): 0-0.
[3] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Research and Prospect of Selective Oxidation of HMF [J]. Progress in Chemistry, 0, (): 8-0.
[4] Yanyan Zhu, Zongyang Yue, Wen Bian, Ruilin Liu, Xiaoxun Ma, Xiaodong Wang. The Structure of Hexaaluminate and Application in High-Temperature Reaction [J]. Progress in Chemistry, 2018, 30(12): 1992-2002.
[5] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[6] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[7] Junjian An, Mengling Wang, Mengxuan Huang, Peng Wang, Guangyan Zhang. Environmental Catalytic Performance of BiFeO3 and Its Modifier [J]. Progress in Chemistry, 2018, 30(9): 1298-1307.
[8] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[9] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[10] Mengya Yuan, Xiaoyun Chen*, Shengling Lin*. Synthesis of the Functionalized Enamine [J]. Progress in Chemistry, 2018, 30(8): 1082-1096.
[11] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[12] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[13] Yao Xiao, Wenjuan Hu, Yanbiao Ren, Xu Kang, Jian Liu. Bioinspired Photo/Electrocatalytic N2 Fixation [J]. Progress in Chemistry, 2018, 30(4): 325-337.
[14] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[15] Yuanbin She, Jinhui Deng, Long Zhang, Haimin Shen*. Catalytic Oxidation of Cyclohexane by O2 as an Oxidant [J]. Progress in Chemistry, 2018, 30(1): 124-136.