中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 1-9 DOI: 10.7536/PC130853 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Photoelectrochemical Sensors for the Detection of DNA Damage

Wu Yiping, Guo Lianghong*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Science Foundation for Distinguished Young Scholars of China(No. 20825519) and the National Natural Science Foundation of China (No. 21375143)

PDF ( 1694 ) Cited
Export

EndNote

Ris

BibTeX

DNA is a kind of genetic material that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. DNA damage occurs frequently in organisms. Some endogenous and exogenous chemicals have been found to induce structural damages to nuclear DNA by base oxidation or modification. If unrepaired, these damaged DNA may lead to gene mutation and even tumor generation. Due to their short response time, high sensitivity, low cost and ease of miniaturization, electrochemical DNA sensors are well qualified for the rapid screening of industrial and environmental chemicals for their potential geno-toxicity. This review article first introduces briefly the types and working mechanisms of current electrochemical DNA sensors. Then it describes in more detail the work on electrochemical and photoelectrochemical sensors for the detection of DNA damage, based largely on the work of our own laboratory, including general type sensors for the rapid screening of industrial and environmental chemicals with potential geno-toxicity, as well as specific type sensors for the identification and quantification of DNA damage products such as 8-oxodGuo and methylated DNA bases. In the end, the existing problems and future research directions of the DNA damage electrochemical sensors are discussed.

Contents
1 Introduction
2 Types of DNA electrochemical sensors
3 Electrochemical sensors for DNA damage detection
4 Photoelectrochemical sensors for DNA damage detection
4.1 Photoelectrochemical detection method
4.2 Sensing mechanisms for DNA damage detection
4.3 General-type sensors
4.4 Specific-type sensors
4.5 Investigation of chemical-induced DNA damage
5 Conclusions and perspectives

CLC Number: 

[1] Rajski S R, Jackson B A, Barton J K. Mutat. Res. Fund. Mol. M., 2000, 447: 49.
[2] Palecek E, Fojta M. in Bioelectronics. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. 127.
[3] Friedberg E C. Nature, 2003, 421: 436.
[4] Schärer O D. Angew. Chem. Int. Ed., 2003, 42: 2946.
[5] England T G, Jenner A, Aruoma O I, Halliwell B. Free Radical Res., 1998, 29: 321.
[6] Helbock H J, Beckman K B, Shigenaga M K, Walter P B, Woodall A A, Yeo H C, Ames B N. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 288.
[7] Jenner A, England T G, Aruoma O I, Halliwell B. Biochem. J., 1998, 331: 365.
[8] Cadet J, D'Ham C, Douki T, Pouget J P, Ravanat J L, Sauvaigo S. Free Radical Res., 1998, 29: 541.
[9] Ciolkowski M L, Fang M M, Lund M E. J. Pharmaceut. Biomed., 2000, 22: 1037.
[10] Wang J, Jiang M, Palecek E. Bioelectrochem. Bioenerg., 1999, 48: 477.
[11] Pope L H, Allen S, Davies M C, Roberts C J, Tendler S J B, Williams P M. Langmuir, 2001, 17: 8300.
[12] 张先恩(Zhang X E). 生物传感器(Biosensor). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 6.
[13] Pale?ek E. Progress in Nucleic Acid Research and Molecular Biology (Ed. Cohn W E), 1976, 18: 151.
[14] Pale?ek E, Fojta M. Anal. Chem., 2001, 73: 74A.
[15] Johnston D H, Thorp H H. J. Phys. Chem., 1996, 100: 13837.
[16] Johnston D H, Glasgow K C, Thorp H H. J. Am. Chem. Soc., 1995, 117: 8933.
[17] Pale?ek E, Hung M A. Anal. Biochem., 1983, 132: 236.
[18] Pale?ek E, Vojtíšková M, Jelen F, Lukášová E. Bioelectrochem. Bioenerg., 1984, 12: 135.
[19] Lukášova E, Jelen F, Pale?ek E. Gen. Physiol. Biophys., 1982, 1: 53.
[20] Jelen F, Kalovský P, Makaturová E, Pe?inka P, Pale?ek E. Gen. Physiol. Biophys., 1991, 10: 461.
[21] Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Anal. Chem., 2003, 75: 2181.
[22] Zhu N, Cai H, He P, Fang Y. Anal. Chim. Acta, 2003, 481: 181.
[23] Fojta M, Pale?ek E. Anal. Chim. Acta, 1997, 342: 1.
[24] Jelen F, Fojta M, Pale?ek E. J. Electroanal. Chem., 1997, 427: 49.
[25] Jelen F, Tomschik M, Pale?ek E. J. Electroanal. Chem., 1997, 423: 141.
[26] Dennany L, Forster R J, White B, Smyth M, Rusling J F. J. Am. Chem. Soc., 2004, 126: 8835.
[27] Mbindyo J, Zhou L, Zhang Z, Stuart J D, Rusling J F. Anal. Chem., 2000, 72: 2059.
[28] Zhou L, Rusling J F. Anal. Chem., 2001, 73: 4780.
[29] Mugweru A, Rusling J F. Anal. Chem., 2002, 74: 4044.
[30] Yang J, Zhang Z, Rusling J F. Electroanalysis, 2002, 14: 1494.
[31] Dennany L, Forster R J, Rusling J F. J. Am. Chem. Soc., 2003, 125: 5213.
[32] Munge B, Estavillo C, Schenkman J B, Rusling J F. Chem. Bio. Chem., 2003, 4: 82.
[33] Rusling J F, Forster R J. J. Colloid Interf. Sci., 2003, 262: 1.
[34] Wang B Q, Rusling J F. Anal. Chem., 2003, 75: 4229.
[35] Zhou L P, Yang J, Estavillo C, Stuart J D, Schenkman J B, Rusling J F. J. Am. Chem. Soc., 2003, 125: 1431.
[36] Rusling J F. Biosens. Bioelectron., 2004, 20: 1022.
[37] Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2007, 79: 1897.
[38] So M, Hvastkovs E G, Schenkman J B, Rusling J F. Biosens. Bioelectron., 2007, 23: 492.
[39] Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2008, 80: 2272.
[40] Zu Y, Liu H, Zhang Y, Hu N. Electrochim. Acta, 2009, 54: 2706.
[41] Cahova-Kucharikova K, Fojta M, Mozga T, Palecek E. Anal. Chem., 2005, 77: 2920.
[42] Liu Y, Hu N. Biosens. Bioelectron., 2009, 25: 185.
[43] Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2003, 21: 1192.
[44] Boon E M, Barton J K. Curr. Opin. Struc. Biol., 2002, 12: 320.
[45] Boon E M, Ceres D M, Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2000, 18: 1096.
[46] Kelley S O, Jackson N M, Hill M G, Barton J K. Angew. Chem. Int. Ed., 1999, 38: 941.
[47] Kalyanasundaram K, Grätzel M. Coordin. Chem. Rev., 1998, 177: 347.
[48] Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2003, 76: 499.
[49] Chen D, Zhang H, Li X, Li J H. Anal. Chem., 2010, 82: 2253.
[50] Lu W, Wang G, Jin Y, Yao X, Hu J Q, Li J H. Appl. Phys. Lett., 2006, 89: 263902.
[51] Lu W, Jin Y, Wang G, Chen D, Li J H. Biosens. Bioelectron., 2008, 23: 1534.
[52] Liang M, Liu S, Wei M, Guo L H. Anal. Chem., 2005, 78: 621.
[53] Holmlin R E, Stemp E D A, Barton J K. Inorg. Chem., 1998, 37: 29.
[54] Liang M, Guo L H. Environ. Sci. Technol., 2007, 41: 658.
[55] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[56] Beckman K B, Ames B N. J. Biol. Chem., 1997, 272: 19633.
[57] Wu L L, Chiou C C, Chang P Y, Wu J T. Clin. Chim. Acta, 2004, 339: 1.
[58] Kawanishi S, Hiraku Y, Murata M, Oikawa S. Free Radical Bio. Med., 2002, 32: 822.
[59] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891.
[60] Mugweru A, Wang B, Rusling J F. Anal. Chem., 2004, 76: 5557.
[61] Wrona M Z, Owens J L, Dryhurst G. J. Electroanal. Chem. Interfacial Electrochem., 1979, 105: 295.
[62] Poje M, Sokoli D? -Maravi D? L. Tetrahedron, 1986, 42: 747.
[63] Hosford M E, Muller J G, Burrows C J. J. Am. Chem. Soc., 2004, 126: 9540.
[64] Xue L, Greenberg M M. J. Am. Chem. Soc., 2007, 129: 7010.
[65] Zhang B, Guo L H, Greenberg M M. Anal. Chem., 2012, 84: 6048.
[66] Bergeron F, Auvré F, Radicella J P, Ravanat J L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 5528.
[67] Box H C, Budzinski E E, Dawidzik J B, Gobey J S, Freund H G. Free Radical Bio. Med., 1997, 23: 1021.
[68] Beranek D T, Weis C C, Swenson D H. Carcinogenesis, 1980, 1: 595.
[69] Singer B. Molecular Biology of Mutagens and Carcinogens. NY: Plenum Press, 1983.
[70] Chaudhuri I, Essigmann J M. Carcinogenesis, 1991, 12: 2283.
[71] Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y. Annu. Rev. Biochem., 1988, 57: 133.
[72] Ezaz-Nikpay K, Verdine G L. Chem. Biol., 1994, 1: 235.
[73] Wu Y P, Zhang B T, Guo L H. Anal. Chem., 2013, 85: 6908.
[74] Imlay J, Chin S, Linn S. Science, 1988, 240: 640.
[75] Kasai H. Mutat. Res. Rev. Mutat., 1997, 387: 147.
[76] Toyokuni S. Free Radical Bio. Med., 1996, 20: 553.
[77] Valko M, Morris H, Cronin M T D. Curr. Med. Chem., 2005, 12: 1161.
[78] Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Chem. Biol. Interact., 2006, 160: 1.
[79] Luo Y, Han Z, Chin S M, Linn S. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 12438.
[80] Jia S, Liang M, Guo L H. J. Phys. Chem B, 2008, 112: 4461.
[81] Lin P H, La D K, Upton P B, Swenberg J A. Carcinogenesis, 2002, 23: 365.
[82] Meerman J H N, Beland F A, Mulder G J. Carcinogenesis, 1981, 2: 413.
[83] Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270: 942.
[84] Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free Radical Bio. Med., 2002, 32: 465.
[85] Jia S, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010, 397: 2395.
[86] Pang S W, Park H Y, Jang Y S, Kim W S, Kim J H. Colloids. Surf. B, 2002, 26: 213.
[87] Fritz H, Maier M, Bayer E. J. Colloid Interf. Sci., 1997, 195: 272.
[88] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Letters, 2006, 6: 1794.
[89] Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano, 2007, 2: 85.
[90] Zhang B T, Du X, Jia S P, He J H, Guo L H. Sci. China Chem., 2011, 54: 1260.

[1] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[2] Chenxi Liang, Lixin Cao*, Yuejuan Zhang, Peisheng Yan. Electrochemical Biosensors for Marine Toxins Analysis [J]. Progress in Chemistry, 2018, 30(7): 1028-1034.
[3] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.