中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 529-544 DOI: 10.7536/PC130834 Previous Articles   Next Articles

• Review •

Oscillations and Pattern Formation in Sulfur-Contained Reaction Systems

Yuan Ling, Liu Yang, Yang Tao, Liu Haimiao, Gao Qingyu*   

  1. College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by National Natural Science Foundation of China (No. 21073232, 51221462), Natural Science Foundation of Jiangsu Province (No.BK2011006), the Scientific Research and Innovation Project for College Postgraduate of Jiangsu Province (No. CXLX12_0961) and the Fundamental Research Fund from Chinese Central University (No. 2012QNA17, 2013XK05)

PDF ( 784 ) Cited
Export

EndNote

Ris

BibTeX

Sulfur-contained nonlinear reaction system is a significant branch of nonlinear chemistry, which can display complicated dynamics both in the homogeneous and reaction-diffusion medium. In particular, it also plays a critical role in the aspect of fronts interaction, labyrinthic pattern, self-replication pattern and systematical design of pattern formation in recent years. According to the number of oscillatory components, sulfur-contained oscillatory systems are mainly divided into two-component systems and three-component systems. The progress on sulfur-contained compound oscillators and pattern formation during the past three decades are introduced in the review. Furthermore, the potential application of the sulfur-contained oscillators and the involved reaction systems in biological field and responsive gel medium are systematically summarized. The difficulties existed in this active field are discussed in detail and the future directions are prospected.

Contents
1 Introduction
2 Sulfur-contained oscillators
2.1 Sulfur-contained oscillators with two components
2.2 Sulfur-contained oscillators with three components
2.3 Mechanism model for oscillators
3 Pattern formation in sulfur-contained systems
3.1 Patterns in the two-component systems
3.2 Patterns in three-component systems
3.3 Reaction diffusion model for sulfur-contained nonlinear chemical systems
4 pH oscillators of sulfur-contained coupled with biological molecular and soft matter
4.1 Coupling with biological molecular
4.2 Coupling with soft matter
5 Conclusions and outlook

CLC Number: 

[1] Bray W C. J. Am. Chem. Soc., 1921, 43: 1262.
[2] Belousov B P. Compilation of Abstracts on Radiation Medicine, 1959, 147: 1.
[3] Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. New York: Wiley-Interscience, 1977.
[4] Orbán M, de Kepper P, Epstein I R. J. Am. Chem. Soc., 1982, 104: 2657.
[5] Orbán M, de Kepper P, Epstein I R. J. Phys. Chem., 1982, 86: 431.
[6] Rábai G, Szanto T G, Kovacs K. J. Phys. Chem. A, 2008, 112: 12007.
[7] Orbán M, Epstein I R. J. Phys. Chem., 1982, 86: 3907.
[8] Doona C J, Doumbouya S I. J. Phys. Chem., 1994, 98: 513.
[9] Lee K J, Mccormick W D, Ouyang Q, Swinney H L. Science, 1993, 261: 192.
[10] Rushing C W, Thompson R C, Gao Q. J. Phys. Chem. A, 2000, 104: 11561.
[11] Sagués F, Epstein I R. Dalton Transactions, 2003: 1201.
[12] Ouyang Q, Swinney H L. Chaos, 1991, 1: 411.
[13] Lee K J, Mccormick W D, Pearson J E, Swinney H L. Nature, 1994, 369: 215.
[14] Szalai I, De Kepper P. J. Phys. Chem. A, 2008, 112: 783.
[15] Szalai I, De Kepper P. Chaos, 2008, 18: 026105.
[16] Orbán M, Epstein I R. J. Am. Chem. Soc., 1985, 107: 2302.
[17] Rábai G, Orbán M, Epstein I R. J. Phys. Chem., 1992, 96: 5414.
[18] Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 101.
[19] Rábai G, Epstein I R. J. Am. Chem. Soc., 1992, 114: 1529.
[20] Orbán M. J. Am. Chem. Soc., 1986, 108: 6893.
[21] Luo Y, Orbán M, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 4541.
[22] Kovács K M, Rábai G. J. Phys. Chem. A, 2001, 105: 9183.
[23] Mao S, Gao Q, Wang H, Zheng J, Epstein I R. J. Phys. Chem. A, 2009, 113: 1231.
[24] Orbán M, de Kepper P, Epstein I R. J. Phys. Chem. Lett., 1982, 86: 433.
[25] Maselko J, Epstein I R. J. Phys. Chem., 1984, 80: 3175.
[26] Alamgir M, Epstein I R. Int. J. Chem. Kinet., 1985, 17: 429.
[27] Gao Q, Wang J. Chem. Phys. Lett., 2004, 391: 349.
[28] Doona C J, Blittersdorf R, Schneider F W. J. Phys. Chem., 1993, 97: 7258.
[29] Simoyi R H, Noyes R M. J. Phys. Chem., 1987, 91: 2689.
[30] Simoyi R H. J. Phys. Chem., 1986, 90: 2802.
[31] Szántó T G, Rábai G. J. Phys. Chem. A, 2005, 109: 5398.
[32] Ouyang Q, De Kepper P. J. Phys. Chem., 1987, 91: 6040.
[33] Orbán M, Epstein I R. J. Am. Chem. Soc., 1989, 111: 2891.
[34] Orbán M, Epstein I R. J. Am. Chem. Soc., 1990, 112: 1812.
[35] Rábai G, Beck M T, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2853.
[36] Bakes D, Schreiberova L, Schreiber I, Hauser M J. Chaos, 2008, 18: 015102.
[37] Yuan L, Gao Q, Zhao Y, Tang X, Epstein I R. J. Phys. Chem. A, 2010, 114: 7014.
[38] Kormanyos B, Nagypál I, Peintler G, Horváth A K. Inorg. Chem., 2008, 47: 7914.
[39] Peintler G, Nagypál I, Epstein I R. J. Phys. Chem., 1990, 94: 2954.
[40] Varga D, Horváth A K, Nagypál I. J. Phys. Chem. B, 2006, 110: 2467.
[41] Horváth A K, Nagypál I. Int. J. Chem. Kinet., 2000, 32: 395.
[42] Varga D, Horváth A K. J. Phys. Chem. A, 2009, 113: 13907.
[43] Horváth A K, Nagypál I. J. Phys. Chem. A, 1998, 102: 7267.
[44] Horváth A K, Nagypál I, Epstein I R. J. Phys. Chem. A, 2003, 107: 10063.
[45] Horváth A K, Nagypál I, Peintler G, Epstein I R. J. Am. Chem. Soc., 2004, 126: 6246.
[46] Horváth A K. J. Phys. Chem. A, 2005, 109: 5124.
[47] Horváth A K, Nagypál I, Epstein I R. Inorg. Chem., 2006, 45: 9877.
[48] Horváth A K, Nagypál I. J. Phys. Chem. A, 2006, 110: 4753.
[49] Cseko G, Horváth A K. J. Phys. Chem. A, 2012, 116: 2911.
[50] Varga D, Horváth A K. Inorg. Chem., 2007, 46: 7654.
[51] Xu L, Horváth A K, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2011, 115: 1853.
[52] Pan C, Wang W, Horváth A K, Xie J, Lu Y, Wang Z, Ji C, Gao Q. Inorg. Chem., 2011, 50: 9670.
[53] Pan C, Liu Y, Horváth A K, Wang Z, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2013, 117: 2924.
[54] Lu Y, Gao Q, Xu L, Zhao Y, Epstein I R. Inorg. Chem., 2010, 49: 6026.
[55] Frerichs G A, Mlnarik T M, Grun R J, Thompson R C. J. Phys. Chem. A, 2001, 105: 829.
[56] Rábai G. ACH-Models Chem., 1998, 135: 381.
[57] Landolt H. Chem. Ber., 1886, 19: 1317.
[58] Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 2804.
[59] Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 4831.
[60] Rábai G, Nagy Z V, Beck M T. React. Kinet. Catal. Lett., 1987, 33: 23.
[61] Liu H, Xie J, Yuan L, Gao Q. J. Phys. Chem. A, 2009, 113: 11295.
[62] Liu H, Horváth A K, Zhao Y, Lv X, Yang L, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 1502.
[63] Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 7268.
[64] Burger M, Field R J. Nature, 1984, 307: 720.
[65] Resch P, Field R J, Schneider F W. J. Phys. Chem., 1989, 93: 2783.
[66] Resch P, Field R J, Schneider F W, Burger M. J. Phys. Chem., 1989, 93: 8181.
[67] Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 15454.
[68] Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 10615.
[69] Rábai G. J. Phys. Chem. A, 1997, 101: 7085.
[70] Chie K, Okazaki N, Tanimoto Y, Hanazaki I. Chem. Phys. Lett., 2001, 334: 55.
[71] Edblom E C, Orbán M, Epstein I R. J. Am. Chem. Soc., 1986, 108: 2826.
[72] Gaspar V, Showalter K. J. Am. Chem. Soc., 1987, 109: 4869.
[73] Edblom E C, Gyorgyi L, Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 4876.
[74] Rábai G, Kaminaga A, Hanazaki I. J. Phys. Chem., 1995, 99: 9795.
[75] Edblom E C, Luo Y, Orban M, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2722.
[76] Kaminaga A, Rábai G, Mori Y, Hanazaki I. J. Phys. Chem., 1996, 100: 9389.
[77] Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 3870.
[78] Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 8271.
[79] Mori Y, Hanazaki I. J. Phys. Chem., 1993, 97: 7375.
[80] Mori Y, Hanazaki I. J. Phys. Chem., 1992, 96: 9083.
[81] Vanag V K, Mori Y, Hanazaki I. J. Phys. Chem., 1994, 98: 8392.
[82] Rábai G, Hanazaki I. J. Am. Chem. Soc., 1997, 119: 1458.
[83] Okazaki N, Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 10915.
[84] Rábai G, Orban M. J. Phys. Chem., 1993, 97: 5935.
[85] Horváth A K. J. Phys. Chem. A, 2008, 112: 3935.
[86] Epstein I R, Pojman J A. An introduction to nonlinear Chemical Dynamics Oscillations, Waves, Patterns and waves. New York: Oxford University Press, 1998.
[87] Kapral R, Showalter K. Chemical waves and patterns. Springer, 1995.
[88] Turing A M. Phil. Trans. R. Soc. B, 1952, 237: 37.
[89] Castets V, Dulos E, Boissonade J, De Kepper P. Phys. Rev. Lett., 1990, 64: 2953.
[90] Pojman J A, Epstein I R. J. Phys. Chem., 1990, 94: 4966.
[91] Nagypál I, Bazsa G, Epstein I R. J. Am. Chem. Soc., 1986, 108: 3635.
[92] Zhivonitko V V, Koptyug I V, Sagdeev R Z. J. Phys. Chem. A, 2007, 111: 4122.
[93] Chinake C R, Simoyi R H. J. Phys. Chem., 1994, 98: 4012.
[94] Simoyi R H, Masere J, Muzimbaranda C, Manyonda M, Dube S. Int. J. Chem, Kinet., 1991, 23: 419.
[95] Martincigh B S, Chinake C R, Howes T, Simoyi R H. Phys. Rev. E, 1997, 55: 7299.
[96] Udovichenko V V, Strizhak P E, Toth A, Horváth D, Ning S, Maselko J. J. Phys. Chem. A, 2008, 112: 4584.
[97] Fuentes M, Kuperman M N, De Kepper P. J. Phys. Chem., A, 2001, 105: 6769.
[98] Horváth D, Toóth A G. J. Chem. Phys., 1998, 108: 1447.
[99] Tóth Á, Lagzi I, Horváth D. J. Phys. Chem., 1996, 100: 14837.
[100] Tóth Á, Horváth D, Siska A. J. Chem. Soc. Faraday Trans., 1997, 93: 73.
[101] Horváth D, Kiricsi M, Tóth Á. J. Chem. Soc. Faraday Trans., 1998, 94: 1217.
[102] Viranyi Z, Horváth D, Toth A. J. Phys. Chem. A, 2006, 110: 3614.
[103] Hele-Shaw H S. Nature, 1898, 58: 520.
[104] Gérard T, Tóth T, Grosfils P, Horváth D, De Wit A, Tóth A. Phys. Rev. E, 2012, 86.
[105] Casado G G, Tofaletti L, Muller D, D'Onofrio A. J Chem. Phys., 2007, 126: 114502.
[106] Schuszter G, Tóth T, Horváth D, Tóth Á. Phys. Rev. E, 2009, 79: 016216.
[107] Boissonade J, Dulos E, Gauffre F, Kuperman M N, de Kepper P. Faraday Discussions, 2002, 120: 353.
[108] Boissonade J, de Kepper P, Gauffre F, Szalai I. Chaos, 2006, 16: 037110.
[109] Fuentes M, Kuperman M N, Boissonade J, Dulos E, Gauffre F, De Kepper P. Phys. Rev. E, 2002, 66: 056205.
[110] Strier D, Boissonade J. Phys. Rev. E, 2004, 70: 016210.
[111] Keresztessy A, Nagy I P, Bazsa G, Pojman J A. J. Phys. Chem., 1995, 99: 5379.
[112] Pojman J A, Komlósi A, Nagy I P. J. Phys. Chem., 1996, 100: 16209.
[113] Nagy I P, Pojman J A. J. Phys. Chem., 1993, 97: 3443.
[114] Nagy I P, Keresztessy A, Pojman J A. J. Phys. Chem., 1995, 99: 5385.
[115] Viranyi Z, Szalai I, Boissonade J, De Kepper P. J. Phys. Chem. A, 2007, 111: 8090.
[116] Szalai I, De Kepper P. Phys. Chem. Chem. Phys., 2006, 8: 1105.
[117] Gao Q, An Y, Wang J. Phys. Chem. Chem. Phys., 2004, 6: 5389.
[118] Gao Q, Xie R. Chem. Phys. Chem., 2008, 9: 1153.
[119] Liu H, Pojman J A, Zhao Y, Pan C, Zheng J, Yuan L, Horváth A K, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 131.
[120] Watzl M, Münster A F. Chem. Phys. Lett., 1995, 242: 273.
[121] Kurin-Csrgei K, Orbán M, Zhabotinsky A M, Epstein I R. Chem. Phys. Lett., 1998, 295: 70.
[122] Fecher F, Strasser P, Eiswirth M, Schneider F W, Münster A F. Chem. Phys. Lett., 1999, 313: 205.
[123] Steinbock O, Kasper E, Müller S C. J. Phys. Chem. A, 1999, 103: 3442.
[124] Lee G, Ouyang Q, Swinney H L. J. Chem. Phys., 1996, 105: 10830.
[125] Szalai I, de Kepper P. Chaos, 2008, 18: 026105.
[126] Ouyang Q, Swinney H L. Nature, 1991, 352: 610.
[127] Ouyang Q, Noszticzius Z, Swinney H L. J. Phys. Chem., 1992, 96: 6773.
[128] Rudovics B, Dulos E, De Kepper P. Physi. Scr., 1996, T67: 43.
[129] Dulos E, Davies P, Rudovics B, De Kepper P. Physica D, 1996, 98: 53.
[130] De Kepper P, Dulos E, Boissonade J, De Wit A, Dewel G, Borckmans P. J. Stat. Phys., 2000, 101: 495.
[131] Perraud J J, de Wit A, Dulos E, De Kepper P, Dewel G, Borckmans P. Phys. Rev. Lett., 1993, 71: 1272.
[132] De Kepper P, Perraud J J, Rudovics B, Dulos E. Int. J. Bif. Chaos, 1994, 4: 1215.
[133] Davies P W, Blanchedeau P, Dulos E, de Kepper P. J. Phys. Chem. A, 1998, 102: 8236.
[134] Vigil R D, Ouyang Q, Swinney H L. Physica A, 1992, 188: 17.
[135] Asakura K, Konishi R, Nakatani T, Nakano T, Kamata M. J. Phys. Chem. B, 2011, 115: 3959.
[136] Dolnik M, Berenstein I, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2001, 87: 238301.
[137] Berenstein I, Yang L, Dolnik M, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2003, 91: 058302.
[138] Míguez D, Pérez-Villar V, Muuzuri A. Phys. Rev. E, 2005, 71: 066217.
[139] Lengyel I, Epstein I R. Science, 1991, 251: 650.
[140] Rudovics B, Barillot E, Davies P W, Dulos E, Boissonade J, de Kepper P. J. Phys. Chem. A, 1999, 103: 1790.
[141] Blanchedeau P, Boissonade J. Phy. Rev. Lett., 1998, 81: 5007.
[142] Horváth J, Szalai I, de Kepper P. Science, 2009, 324: 772.
[143] Horváth J, Szalai I, de Kepper P. Physica D, 2010, 239: 776.
[144] Szalai I, Horváth J, Takacs N, de Kepper P. Phys. Chem. Chem. Phys., 2011, 13: 20228.
[145] Szalai I, Cuinas D, Takacs N, Horváth J, De Kepper P. Interface Focus, 2012, 2: 417.
[146] Pearson J E. Science, 1993, 261: 189.
[147] Glass L, Mackey M C. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, 1988.
[148] Goldbeter A, Keizer J. Phys. Today, 1998, 51: 86.
[149] Crook C J, Smith A, Jones R A L, Ryan A J. Phys. Chem. Chem. Phys., 2002, 4: 1367.
[150] Varga I, Szalai I, Meszaros R, Gilanyi T. J. Phys. Chem. B, 2006, 110: 20297.
[151] Giannos S A, Dinh S M, Berner B. J. Pharm. Sci., 1995, 84: 539.
[152] Ohmori T, Yu W, Yamamoto T, Endo A, Nakaiwa M, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 2005, 407: 48.
[153] Liedl T, Simmel F C. Nano Lett., 2005, 5: 1894.
[154] Liedl T, Sobey T L, Simmel F C. Nano Today, 2007, 2: 36.
[155] Goodwin B C. Adv. Enzyme Regul., 1965, 3: 425.
[156] Dano S, Sorensen P G, Hynne F. Nature, 1999, 402: 320.
[157] Kar S, Shankar Ray D. J. Theor. Biol., 2005, 237: 58.
[158] Hess B, Brand K, Pye K. Biochem. Biophys. Res. Commun., 1966, 23: 102.
[159] Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. J. Pharmacol Sci., 2005, 97: 212.
[160] Harootunian A, Kao J, Paranjape S, Tsien R. Science, 1991, 251: 75.
[161] Mahowald M W, Schenck C H. Nature, 2005, 437: 1279.
[162] Vanag V K. J. Phys. Chem. A, 1998, 102: 601.
[163] Frerichs G A, Thompson R C. J. Phys. Chem. A, 1998, 102: 8142.
[164] Hauser M J B, Strich A, Bakos R, Nagy-Ungvarai Z, Müller S C. Faraday Discussions, 2002, 120: 229.
[165] Misra G. J. Controlled Release, 2002, 79: 293.
[166] Kurin-Csrgei K, Epstein I R, Orbán M. Nature, 2005, 433: 139.
[167] Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2006, 110: 7588.
[168] Horváth V, Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2008, 112: 4271.
[169] Kovács K, Leda M, Vanag V K, Epstein I R. J. Phys. Chem. A, 2009, 113: 146.
[170] Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138.
[171] Ghosh P, Spiro T G. J. Am. Chem. Soc., 1980, 102: 5543.
[172] Yoshida R. Ichijo H, Hakuta T, Yamaguchi T. Macr. Rapid Commun., 1995, 16: 305.
[173] Labrot V, De Kepper P, Boissonade J, Szalai I, Gauffre F T. J. Phys. Chem. B, 2005, 109: 21476.
[174] Yang L, Zhabotinsky A M, Epstein I R. Phys. Rev. Lett., 2004, 92: 198303.
[175] Rábai G. Phys. Chem. Chem. Phys., 2011, 13: 13604.
[176] Poros E, Horváth V, Kurin-Csergei K, Epstein I R, Orbán M. J. Am. Chem. Soc., 2011, 133: 7174.
[177] Lu X, Ren L, Gao Q, Zhao Y, Wang S, Yang J, Epstein I R. Chem. Commun., 2013, 49: 7690.

[1] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[2] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[3] Yudong Yang, Jingsong You. Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics [J]. Progress in Chemistry, 2020, 32(11): 1824-1834.
[4] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[5] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[6] Ruqin Liu, Zhirong Suo, Naizhen He, Shuang Chen, Ming Huang. Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point [J]. Progress in Chemistry, 2017, 29(5): 476-490.
[7] Chen Maolong, Yin Bangshao, Song Jianxin. Recent Development of Constructing Porphyrin Arrays via Suzuki-Miyaura Cross-Coupling Reaction [J]. Progress in Chemistry, 2015, 27(6): 641-654.
[8] Ma Wenchan, Zhou Qiao, Zhang Yuecheng, Zhao Jiquan. Direct and Oxidatively Dehydrogenative Coupling of Alcohols with Amines to Amides [J]. Progress in Chemistry, 2014, 26(0203): 334-344.
[9] Jin Xiaoping, Zhang Li, Gao Haoqi, Fang Jianghua, Li Ruifeng, Fang Yewen. Palladium- and Copper-Catalyzed Cross Coupling Reaction of Aliphatic Alcohols and Aryl Halides [J]. Progress in Chemistry, 2013, 25(11): 1898-1905.
[10] Zhang Wensheng, Li Wei, Kuang Chunxiang. Application of 1,1-Dibromo-2-Arylalkene in Cyclization Reaction [J]. Progress in Chemistry, 2013, 25(07): 1149-1157.
[11] Chen Zhouqun, Ma Chang-Qi. Synthesis of Poly(3-Alkylthiophene)s [J]. Progress in Chemistry, 2013, 25(07): 1166-1176.
[12] Chen Kailing, Zhao Yunhui*, Yuan Xiaoyan*. Chemical Modification of Silica: Method, Mechanism, and Application [J]. Progress in Chemistry, 2013, 25(01): 95-104.
[13] Zhang Chunfang, Ma Haitao, Bian Wensheng. Highly Accurate Ab Initio Potential Energy Surface for Chemical Reactions [J]. Progress in Chemistry, 2012, 24(06): 1082-1093.
[14] Lu Xingjie, Zhao Yuemin, Ren Lin, Yang Yingying, Gao Qingyu. Spatiotemporal Dynamics of Photosensitive BZ Reaction [J]. Progress in Chemistry, 2012, 24(05): 709-721.
[15] Weng Jianquan, Yu Zhiqin, Zhang Guofu. Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin [J]. Progress in Chemistry, 2012, 24(04): 523-544.