中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 553-559 DOI: 10.7536/PC130816 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Research on the High-Voltage Electrolyte for Lithium Ion Batteries

Zhang Lingling, Ma Yulin, Du Chunyu, Yin Geping*   

  1. Institute of Advanced Chemical Power Sources, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA110203), National Science Foundation of China(No.51202047), Heilongjiang Postdoctoral Fund (No.LBH-Z11141) and Fundamental Research Funds for the Central Universities (No.HIT.NSRIF.2011022)

PDF ( 2255 ) Cited
Export

EndNote

Ris

BibTeX

The research for high-voltage cathode materials is one of important way to develop high energy density of lithium ion batteries. Electrolyte is an essential part of lithium ion batteries, which affects the electrochemical behavior through the interface reactions with the electrodes and its Li+ ion diffusion characters. The conventional carbonate/LiPF6 electrolyte decomposes and tends to react with active cathode material when the voltage is higher than 4.5 V (vs Li/Li+), resulting in the poor performance. Therefore, searching for high-voltage electrolytes is essential to the realization of high-voltage lithium ion batteries. The progress on high-voltage electrolyte for lithium ion batteries is reviewed in this paper. The draw back and challenge of high-voltage electrolyte are also illustrated. On the theory of designing for electrolyte solvent molecular, the performance of high-voltage electrolyte is evaluated from aspects of new solvent system electrolytes and carbonate-based electrolytes. New electrolytes based on nitrile, sulfone and ionic liquids as high-voltage electrolytes with their advantage and drawbacks are analyzed. The action mechanisms of different additives in the carbonate-based electrolytes are discussed. In addition, the application of theoretical calculation methods on high-voltage electrolyte is discussed, and the vision utilizing theoretical calculation in designing novel high-voltage electrolyte is prospected.

Contents
1 Introduction
2 New organic solvents
2.1 Nitrile-based solvents
2.2 Sulfone-based solvents
2.3 Ionic liquids
3 Carbonate solvents and additives
3.1 Electrochemically polymerized additives
3.2 Phosphine-based additives
3.3 Boron-based additives
3.4 Others
4 The application of theoretical calculation method on high-voltage electrolyte
5 Conclusion and outlook

CLC Number: 

[1] Devaraju M K, Rangappa D, Honma I. Electrochim. Acta, 2012, 85: 548.
[2] Yang C F, Huang J J, Huang LG, Wang G J. J. Power Sources, 2013, 226: 219.
[3] Wang F, Zhang Y, Zou J Z, Liu W J, Chen Y P. J. Alloys Compounds, 2013, 558: 172.
[4] Bareo J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P. Chem. Mater., 2011, 23 (8): 2039.
[5] Alcntara R, Jaraba M, Lavela P, Tirado J L. J. Electroanal. Chem., 2004, 566: 187.
[6] Liu J, Manthiram A. J. Electrochem. Soc., 2009, 156(1): A66.
[7] Liu J, Manthiram A. J. Electochem. Soc., 2009, 156(11): A833.
[8] Yang L, Ravdel B, Lucht B L. Electrochem. Solid-State Lett., 2010, 13(8): A95.
[9] Oh S W, Park S H, Kim J H, Bae Y C, Sun Y K. J. Power Sources, 2006, 157(1): 464.
[10] 尹成果(Yin C G), 马玉林(Ma Y L), 程新群(Cheng X Q), 尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2013, 25(1): 54.
[11] Ue M, Ida K, Mori S. J. Electrochem. Soc., 1994, 141(11): 2989.
[12] Wang Q, Zakeeruddin S M, Exnar I. J. Electrochem. Soc., 2004, 151(10): A1598.
[13] Garcia B, Armand M. J. Power Sources, 2004, 132: 206.
[14] Ue M, Takeda M, Takehara M, Mori S. J. Electrochem. Soc., 1997, 144(8): 2684.
[15] Momota K. Battery Technol., 1996, 8: 108.
[16] Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z I. J. Electrochem. Soc., 2002, 149 (2): A185.
[17] Censo D D, Exnar I, Graetzel M. Electrchem. Commun., 2005, 7: 1000.
[18] Galasiu I, Galasiu R, Thonstad J. Nonaqueous Electrochemistry (Eds. Aurbach D), New York: Marcel Dekker, 1999. 461.
[19] Abu-Lebdeh Y, Davidson I. J. Power Sources, 2009, 189: 576.
[20] Abu-Lebdeh Y, Davidson I. J. Electrochem. Soc., 2009, 156(1): A60.
[21] 左晓希(Zuo X X), 李伟善(Li W S), 刘建生(Liu J S). 电池工业(Chinese Battery Industry), 2003, 11(2): 97.
[22] Kang X. Chem. Rev., 2004, 104: 4303.
[23] Xu K, Angell C A. J. Electrochem. Soc., 1998, 145(4): L70.
[24] Xu K, Angell C A. J. Electrochem. Soc., 2002, 149(7): A920.
[25] Sun X G, Angell C A. Electrochem. Commun., 2004, 175: 257.
[26] Seel J A, Dahn J R. J. Electrochem. Soc., 2000, 147(3): 892.
[27] Sun X G, Angell C A. Electrochem. Commun., 2005, 7: 261.
[28] Ouatani L E, Dedryvere R, Siret C, Biensanb P, Reynauda S, Iratçabala P, Gonbeaua D. J. Electrochem. Soc., 2009, 156(2): A103.
[29] Abouimrane A, Belharouak I, Amine K. Electrochem. Commun., 2009, 11: 1073.
[30] Watanabe Y, Kinoshita S, Wada S, Hoshino K J, Morimoto H, Tobishima S. J. Power Sources, 2008, 179(2): 770.
[31] Sun X G, Austen C A. Electrochem. Commun., 2009, 11: 1418.
[32] Sun X G, Austen C A. Solid State Ionics, 2004, 175: 257.
[33] Buzzeo M, Evans R, Compton R. Chem. Phys. Chem., 2004, 5: 1106.
[34] Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. J. Phys. Chem. B, 2004, 108(42): 16593.
[35] Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. J. Phys. Chem. B, 2005, 109(13): 6103.
[36] Matsumoto H, Sakaebe H, Tatsumi K. J. Power Sources, 2005, 146: 45.
[37] Markevich E, Baranchugov V, Aurbach D. Electrochem. Commun., 2006, 8: 1331.
[38] Borgel V, Markevich E, Aurbach D. J. Power Sources, 2009, 189: 331.
[39] Holzapfel M, Jost C, Prodi-Schwab A, Krumeich F, Würsig A, Buqa H, Novák P. Carbon, 2005, 43: 1488.
[40] Sato T, Maruo T, Marukane S. J. Power Sources, 2004, 138: 253.
[41] Zheng H, Jiang K, Abe T. Carbon, 2006, 44: 203.
[42] Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K. J. Power Sources, 2010, 195: 845.
[43] Xiang J, Wu F, Chen R, Li L, Yu H. J. Power Sources, 2013, 233: 115.
[44] Yazami R, Ozawa Y, Gabrisch H, Fultz B. Electrochim. Acta, 2004, 50: 385.
[45] Kim Y, Veith G M, Nanda J, Unocic R R, Chi M F, Dudney N J. Electrochim. Acta, 2011, 56(19): 6573.
[46] Yang L, Markmaitree T, Lucht B L. J. Power Sources, 2011, 196: 2251.
[47] Reimers J N, Way B M., EP6074777, 1998.
[48] Mao H. EP 5879834, 1999.
[49] Abe K, Ushigoe Y, Yoshitake H, Yoshiol M. J. Power Sources, 2006, 153: 328.
[50] Lee K S, Sun Y K, Noh J, Song K S, Kim D W. Electrchem. Commun., 2009, 11: 1900.
[51] Lee Y S, Lee K S, Sun Y K, Lee Y M, Kim D W. J. Power Sources, 2011, 196: 6997.
[52] Zhang S S, Xu K, Jow T R. J. Power Sources, 2003, 113: 166.
[53] Ma Y L, Yin G P, Zuo P J, Tan X L, Gao Y Z, Shi P F. Electrochem. Solid-State Lett., 2008, 11(8): A129.
[54] Nam N D, Park I J, Kim J G. ECS Transactions, 2011, 33(22): 7.
[55] Lee J N, Han G B, Ryou M H. Electrochim. Acta, 2011, 56: 5195.
[56] Abe K, Takaya T, Yoshitake H, Ushigoea Y, Yoshiob M, Wang H Y. Electrochem. Solid-State Lett., 2004, 7(12): A462.
[57] Xu M Q, Liu Y L, Li B, Weishan Li, Li X P, Hu S J. Electrochem. Commun., 2012, 18: 123.
[58] Cresce A V, Xu K. J. Electrochem. Soc., 2011, 158(3): A337.
[59] Wu X L, Xin S, Seo H H, Kim J, Guo Y G, Lee J S. Solid State Ionics, 2011, 186: 1.
[60] Li Y H, Wu X L, Kim J H, Xin S, Su J, Yan Y, Lee J S, Guo Y G. J. Power Sources, 2013, 244: 234.
[61] Xu K, Zhang S S, Poese B A, Jow T R. Elecrochem. Solid-State Lett., 2002, 5: A259.
[62] 谭晓兰(Tan X L), 程新群(Cheng X Q), 马玉林(Ma Y L), 尹鸽平(Yin G P). 物理化学学报(Acta Phys. Chim. Sin. ), 2009, 25(10): 1967.
[63] Yang L, Markmaitree T, Lucht B L. J. Power Sources, 2011, 196: 2251.
[64] Dalavi S, Xu M Q, Knight B. Electrochem. Solid-State Lett., 2012, 15 (2): A28.
[65] Hu M, Wei J P, Xing L Y, Zhou Z. J. Appl. Electrochem., 2012, 42: 291.
[66] Zuo X X, Fan C J, Liu J S. J. Power Sources, 2013, 229: 308.
[67] Wrodnigg G H, Tanja M, Besenhard J O, Winter M. Electrochem. Commun., 1999, 1(3/4): 148.
[68] Lee H, Choi S, Kim H J, Choi Y S, Yoon S J, Cho J J. Electrochem. Commun., 2007, 9: 801.
[69] Xu M Q, Li W S, Lucht B L. J. Power Sources, 2009, 193: 804.
[70] Zuo X X, Fan C J, Xiao X. J. Power Sources, 2012, 219: 94.
[71] Kubota T, Ihara M, Katayama S. J. Power Sources, 2012, 207: 141.
[72] 许梦清(Xu M Q), 邢丽丹(Xing L D), 李伟善(Li W S). 化学进展(Progress in Chemistry), 2009, 21(10): 2012.
[73] Shao N, Sun X G, Dai S. J. Phys. Chem. B, 2011, 115, 12120.
[74] Borodin O, Jow T R. ECS Transactions, 2011, 32 (28): 77.
[75] Xing L, Li W, Wang C, Wang Y T, Xu M Q, Gua F L, Hu S J. J. Phys. Chem. B, 2009, 113: 16596.

[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[3] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[4] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[5] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[6] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[7] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[8] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[9] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[10] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[11] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[12] Lu Wang, Zhipeng Huo, Jinxin Yi, Ahmed Alsaedi, Tasawar Hayat, Songyuan Dai. Functional Additives for Perovskite Layer in Organic and Inorganic Hybrid Perovskite Solar Cells [J]. Progress in Chemistry, 2017, 29(8): 870-878.
[13] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[14] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[15] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.