中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 436-449 DOI: 10.7536/PC130779 Previous Articles   Next Articles

• Review •

Photoinduced Toxic Mechanism of Metallic Nanoparticles toward Bacteria in Water

Li Yang, Niu Junfeng*, Zhang Chi, Wang Zhengzao, Zheng Mengyuan, Shang Enxiang   

  1. The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation for Innovative Research Group of China (No.51121003), the General Program of National Natural Science Foundation of China (No.21077010) and the Fok Ying-Tong Education Foundation, China (No.121077)

PDF ( 1390 ) Cited
Export

EndNote

Ris

BibTeX

Nanoparticles (NPs) have been widely used in the fields of chemistry, optics, and biology because of their unique physicochemical properties. The mass production and extensive applications of commercially manufactured NPs inevitably leads to NPs release into the aqueous environment and poses a risk to the ecosystem and human health accidentally or intentionally during production, distribution, use or disposal. The progress on the types, sources, and the physicochemical properties of NPs is critically reviewed in this work. In addition, the factors (i.e., light source wavelength, particle size, natural organic matter, and medium components) that influence the photoinduced toxicity of metallic NPs toward bacteria in the aqueous environments are also summarized. Under light irradiation conditions, metallic NPs can release toxic ions, generate reactive oxygen species (ROS), and change the particle size in the aqueous environment. However, whether the toxicity of metallic NPs toward the bacteria is owing to the released ions, photogenerated ROS (superoxide anion, hydroxyl radical, and singlet oxygen), particle size change, or the combination of the three photochemical behaviors is still uncertain. Therefore the three photochemical behaviors of metallic NPs are critically reviewed to elucidate the possible mechanism of photoinduced toxicity toward the bacteria. Finally, the challenges and existing problems of environmental behavior of metallic NPs are listed and the direction for further research of photoinduced toxicity after metallic NPs entry into the aqueous environment are pointed out (such as quantitative structure-activity relationship of metallic NPs, the complex photoinduced toxic effect of metallic NPs and other pollutants).

Contents
1 Introduction
2 Influence factors for photoinduced toxicity of metallic nanoparticles to bacteria
2.1 Light source wavelength
2.2 Particle size
2.3 Natural organic matter
2.4 Medium component
2.5 Other factors
3 Photoinduced toxicity mechanisms of metallic nanoparticles to bacteria
3.1 Release of metal ions
3.2 Oxidative stress response
3.3 Size effect of metallic nanoparticles
4 Existing problems and perspectives

CLC Number: 

[1] 蒋国翔(Jiang G X), 沈珍瑶(Shen Z Y), 牛军峰(Niu J F), 庄玲萍(Zhuang L P), 何天德(He T D). 化学进展(Prog. Chem.), 2011, 23(8): 1769.
[2] Nel A, Xia T, Mdler L, Li N. Science, 2006, 311(5761): 622.
[3] 王震宇(Wang Z Y), 赵建(Zhao J), 李娜(Li N), 李锋民(Li F M). 环境科学学报(J. Environ. Sci.), 2010, 31(6): 1409.
[4] Li Y, Zhang W, Li K G, Yao Y, Niu J F, Chen Y S. Environ. Pollut., 2012, 164: 259.
[5] Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Nature, 2004, 22(11): 1360.
[6] Zhang W, Li Y, Niu J, Chen Y. Langmuir, 2013, 29(15): 4647.
[7] Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 2006, 6(4): 662.
[8] Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.
[9] Simon-Deckers A l, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrieère M. Environ. Sci. Technol., 2009, 43(21): 8423.
[10] Hotze E M, Labille J, Alvarez P, Wiesner M R. Environ. Sci. Technol., 2008, 42(11): 4175.
[11] 朱小山(Zhu X S), 朱琳(Zhu L), 田胜艳(Tian S Y), 郎宇鹏(Lang Y P), 李燕(Li Y). 生态学报(Acta Ecol. Sin.), 2008, 28(8): 3507.
[12] AshaRani P V, Mun G L K, Hande M P, Valiyaveettil S. ACS Nano, 2009, 3(2): 279.
[13] Bhattacharjee S, de Haan L H J, Evers N M, Jiang X, Marcelis A, Zuilhof H, Rietjens I M C M, Alink G M. Part. Fibre. Toxicol., 2010, 7: 25.
[14] Misawa M, Takahashi J. Nanomed. Nanotechnol. Biol. Med., 2011, 7.
[15] 常雪灵(Chang X L), 祖燕(Zu Y), 赵宇亮(Zhao Y L). 科学通报(Chin. Sci. Bull.), 2011, 56(2): 108.
[16] Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston B D, de-Bastos E, Booth T, Tyler C R, Santos E M. Environ. Sci. Technol., 2013, 47(14): 8005.
[17] Fujiwara H, Yanagida S, Kamat P V. J. Phys. Chem. B, 1999, 103(14): 2589.
[18] Aldana J, Wang Y A, Peng X. J. Am. Chem. Soc, 2001, 123(36): 8844.
[19] Colvin V L. Nat. Biotechnol., 2003, 21(10): 1166.
[20] Cunningham S, Brennan-Fournet M E, Ledwith D, Byrnes L, Joshi L. Environ. Sci. Technol., 2013, 47(8): 3883.
[21] Jiang G X, Shen Z Y, Niu J F, Bao Y P, Chen J, He T D. J. Environ. Monit., 2011, 13(1): 42.
[22] Choi O, Hu Z. Environ. Sci. Technol., 2008, 42(12): 4583.
[23] Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R. J. Phys. Chem. C, 2008, 112(15): 5825.
[24] 吕继涛(Lv J T), 张淑贞(Zhang S Z). 化学进展(Prog. Chem.), 2013, 25(1): 156.
[25] Adams L K, Lyon D Y, Alvarez P J. Water Res., 2006, 40(19): 3527.
[26] Choi O, Hu Z. J. Environ. Eng., 2009, 135(12): 1365.
[27] Ahamed M. Toxicol. Vitro, 2011, 25(4): 930.
[28] Jiang W, Mashayekhi H, Xing B. Environ. Pollut., 2009, 157(5): 1619.
[29] Reddy K M, Feris K, Bell J, Wingett D G, Hanley C, Punnoose A. Appl. Phys. Lett., 2007, 90(21): 213902.
[30] Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M F, Fievet F. Nano Lett., 2006, 6(4): 866.
[31] Baek Y W, An Y J. Sci. Total Environ., 2011, 409(8): 1603.
[32] Choi O, Yu C P, Fernandez G E, Hu Z. Water Res., 2010, 44(20): 6095.
[33] Ispas C, Andreescu D, Patel A, Goia D V, Andreescu S, Wallace K N. Environ. Sci. Technol., 2009, 43(16): 6349.
[34] Dasari T P, Pathakoti K, Hwang H M. J. Environ. Sci., 2013, 25(5): 882.
[35] Li M, Pokhrel S, Jin X, Maedler L, Damoiseaux R, Hoek E M V. Environ. Sci. Technol., 2011, 45(2): 755.
[36] Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C. Langmuir, 2009, 26(6): 4429.
[37] Wu B, Wang Y, Lee Y H, Horst A, Wang Z, Chen D R, Sureshkumar R, Tang Y J. Environ. Sci. Technol., 2010, 44(4): 1484.
[38] Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. Chemosphere, 2008, 71(7): 1308.
[39] Ivask A, Bondarenko O, Jepihhina N, Kahru A. Anal. Bioanal. Chem., 2010, 398: 1.
[40] Wang Z, Lee Y H, Wu B, Horst A, Kang Y, Tang Y J, Chen D R. Chemosphere, 2010, 80(5): 525.
[41] Hu X, Cook S, Wang P, Hwang H M. Sci. Total Environ., 2009, 407(8): 3070.
[42] Brunet L, Lyon D Y, Hotze E M, Alvarez P J J, Wiesner M R. Environ. Sci. Technol., 2009, 43(12): 4355.
[43] Gunawan C, Teoh W Y, Marquis C P, Amal R. ACS Nano, 2011, 5(9): 7214.
[44] Bondarenko O, Ivask A, Kaekinen A, Kahru A. Environ. Pollut., 2012, 169: 81.
[45] Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. Small, 2012, 8(21): 3326.
[46] Dimkpa C O, McLean J E, Britt D W, Johnson W P, Arey B, Lea A S, Anderson A J. Chem. Res. Toxicol., 2012, 25(5): 1066.
[47] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Environ. Sci. Technol., 2006, 40(19): 6151.
[48] Fang T T, Li X, Wang Q S, Zhang Z J, Liu P, Zhang C C. Toxicol. Vitro, 2012, 26(7): 1233.
[49] Wang Q, Fang T, Liu P, Min X, Li X. J. Colloid Interface Sci., 2011, 363(2): 476.
[50] Li R, Jiang F, Xiao Q, Li J, Liu X, Yu Q, Liu Y, Zeng C. Nanotechnology, 2010, 21(47): 1.
[51] Kumar A, Pandey A K, Singh S S, Shanker R, Dhawan A. Free Radic. Biol. Med., 2011, 51(10): 1872.
[52] Kim S W, An Y J. Appl. Microbiol. Biotechnol., 2012, 95(1): 243.
[53] Tong T, Binh C T T, Kelly J J, Gaillard J F, Gray K A. Water Res., 2013, 47(7): 2352.
[54] Li M, Zhu L, Lin D. Environ. Sci. Technol., 2011, 45(5): 1977.
[55] Liu J, Hurt R H. Environ. Sci. Technol., 2010, 44(6): 2169.
[56] Zhang W, Yao Y, Li K G, Huang Y, Chen Y S. Environ. Pollut., 2011, 159(12): 3757.
[57] Li M, Lin D, Zhu L. Environ. Pollut., 2013, 173: 97.
[58] Gorham J M, MacCuspie R I, Klein K L, Fairbrother D H, Holbrook R D. J. Nanopart. Res., 2012, 14(10): 1139.
[59] Li Y, Zhang W, Niu J F, Chen Y S. Environ. Sci. Technol., 2013, 47(18): 10293.
[60] Kittler S, Greulich C, Diendorf J, Koeller M, Epple M. Chem. Mat., 2010, 22(16): 4548.
[61] Yang X, Gondikas A P, Marinakos S M, Auffan M, Liu J, Hsu-Kim H, Meyer J N. Environ. Sci. Technol., 2012, 46(2): 1119.
[62] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4(1): 11.
[63] Lin H F, Liao S C, Hung S W. J. Photochem. Photobiol. A-Chem., 2005, 174(1): 82.
[64] Du J, Gebicki J M. Int. J. Biochem. Cell B, 2004, 36(1): 2334.
[65] Wang S, Gao R, Zhou F, Selke M. J. Mater. Chem., 2004, 14(4): 487.
[66] Irwin F. Arch. Biochem. Biophysics., 1986, 247(1): 1.
[67] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Lett., 2006, 6(8): 1794.
[68] Thomas C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Environ. Sci. Technol., 2006, 40(14): 4346.
[69] Long T C, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry G V, Veronesi B. Environ. Health Perspect., 2007, 115(11): 1631.
[70] Cho M, Chung H, Choi W, Yoon J. Water Res., 2004, 38(4): 1069.
[71] Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121.
[72] Limbach L K, Wick P, Manser P, Robert N, Bruinink A, Stark W J. Environ. Sci. Technol., 2007, 41(11): 4158.
[73] Park E J, Choi J, Park Y K, Park K. Toxicology, 2008, 245(1/2): 90.
[74] Lin W, Huang Y, Zhou X D, Ma Y. Int. J. Toxicol., 2006, 25(6): 451.
[75] Schubert D, Dargusch R, Raitano J, Chan S W. Biochem. Biophys. Res. Commun., 2006, 342(1): 86.
[76] Horie M, Nishio K, Kato H, Fujita K, Endoh S, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K, Niki E. J. Biochem., 2011, 150(4): 461.
[77] Eom H J, Choi J. Toxicol. Vitro, 2009, 23(7): 1326.
[78] Huang C C, Aronstam R S, Chen D R, Huang Y W. Toxicol. Vitro, 2010, 24(1): 45.
[79] Yamamoto O, Komatsu M, Sawai J, Nakagawa Z. J. Mmater Sci: Mater Med., 2004, 15(8): 847.
[80] Fahmy B, Cormier S A. Toxicol. Vitro, 2009, 23(7): 1365.
[81] Karlsson H L, Cronholm P, Gustafsson J, Mller L. Chem. Res. Toxicol., 2008, 21(9): 1726.
[82] Lin W, Huang Y, Zhou X D, Ma Y. Toxicol. Appl. Pharmacol., 2006, 217(3): 252.
[83] Kim Y J, Yu M, Park H O, Yang S I. Mol. Cell Toxicol., 2010, 6(4): 336.
[84] Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. Toxicol. Vitro, 2005, 19(7): 975.
[85] Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y. Toxicol. Vitro, 2009, 23(6): 1076.
[86] Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. Small, 2009, 5(18): 2067.
[87] Dumas E M, Ozenne V, Mielke R E, Nadeau J L. IEEE Trans. NanoBiosci., 2009, 8(1): 58.
[88] Chibli H, Carlini L, Park S, Dimitrijevic N M, Nadeau J L. Nanoscale, 2011, 3(6): 2552.
[89] Ipe B I, Lehnig M, Niemeyer C M. Small, 2005, 1(7): 706.
[90] Green M, Howman E. Chem. Commun., 2005, (1): 121.
[91] Ma J, Chen J Y, Zhang Y, Wang P N, Guo J, Yang W L, Wang C C. J. Phys. Chem. B, 2007, 111(41): 12012.
[92] Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. J. Chem. Eng. Jpn., 1996, 29(4): 627.
[93] 吴其圣(Wu Q S), 杨琛(Yang C), 胡秀敏(Hu X M), 党志(Dang Z), 李筱琴(Li X Q). 环境科学学报(J. Environ. Sci.), 2012, 32(7): 1596.
[94] 叶茵茵(Ye Y Y), 戚菁(Qi J), 王洪涛(Wang H T), 李风亭(Li F T). 水处理技术(Water Treat. Technol.), 2012, 38(12): 6.
[95] Kamat P V, Flumiani M, Hartland G V. J. Phys. Chem. B, 1998, 102(17): 3123.
[96] Kamat P V. J. Phys. Chem. B, 2002, 106(32): 7729.
[97] Osamu Y. Int. J. Inorg. Mater., 2001, 3(7): 643.
[98] Levard C, Hotze E M, Lowry G V, Brown G E, Jr. Environ. Sci. Technol., 2012, 46(13): 6900.

[1] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[2] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[3] Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao, Meiqin Zhang. Methods for Studying the Age Determination of Fingermarks [J]. Progress in Chemistry, 2019, 31(5): 654-666.
[4] Hongmei Liu*, Jianbo Jin, Jun Zhou, Kaixun Huang, Huibi Xu. The Structure and Function of Selenoprotein S and Its Relationship with Diseases [J]. Progress in Chemistry, 2018, 30(10): 1487-1495.
[5] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[6] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[7] Rao Lu, Jiang Yanxia, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang. Electrocatalytic Oxidation of Ethanol [J]. Progress in Chemistry, 2014, 26(05): 727-736.
[8] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[9] Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei. Study on Third-Order Nonlinear Optical Properties of Functional Complexes [J]. Progress in Chemistry, 2013, 25(10): 1625-1630.
[10] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.
[11] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[12] Ma Xiaoyuan, Qian Weiping. Methods to Determine Antioxidant Capacity [J]. Progress in Chemistry, 2011, 23(8): 1737-1746.
[13] Zhang Jintang, Yu Chenmin, Wang Sujing, Wang Zhiyong. The Applications of Metallic Nanoparticles in Coupling Reactions [J]. Progress in Chemistry, 2010, 22(07): 1482-1489.
[14] Zhang Shibing Wang Ying Liu Changlin. Metal-Based Therapeutic Strategies of Neurodegenerative Diseases [J]. Progress in Chemistry, 2009, 21(05): 903-910.
[15] Yu Linghong|Liu Gengtao*. The Structure-Activity Relationship of Dibenzo (a,c) cyclooctene Lignans Isolated from Fructus schizandrae and Innovation of Novel Anti-Hepatitis Drugs [J]. Progress in Chemistry, 2009, 21(01): 66-76.