中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 30-40 DOI: 10.7536/PC130770 Previous Articles   Next Articles

• Review •

Control of Photocatalytic Property of Bismuth-Based Semiconductor Photocatalysts

Duan Fang1,2, Zhang Qin1, Wei Qufu*2, Shi Dongjian1, Chen Mingqing*1   

  1. 1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122;
    2. The Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51302108), the Natural Science Foundation of Jiangsu Province, China (No. BK20130151) and the Key Laboratory of Eco-Textiles, Ministry of Education of China (No. KLET1206)

PDF ( 995 ) Cited
Export

EndNote

Ris

BibTeX

Bismuth-based semiconductor, with superior photocatalytic activity and especially with good absorbance in visible light, have become the research hotspot in photocatalytic field recently. The valence band of bismuth-based semiconductor photocatalyst consist of Bi6s and O2p orbitals and the levels are more negative than that consisting of only O2p, which results in the decrease in the band gap. The visible-light-induced photocatalytic activity of bismuth-based semiconductor photocatalysts is higher than that of traditional TiO2. However, the low quantum efficiency, the easy recombination of electrons and holes, and the low visible light absorption making the bismuth-based semiconductor photocatalysts far away from practical use. Therefore, we must take some measures to improve the efficiency of photocatalytic carriers, suppress the combination of photo electrons and holes, and increase the visible light absorption. This article reviews the recent development of methods for improving the photoactivity of bismuth-based semiconductor photocatalysts, mainly including morphology control, special crystal face exposing, noble metal deposition, metal ion doping, nonmetal doping, semiconductor combination and so on. The relationship between these methods and photocatalytic activity is analyzed, and it may be useful for designing highly efficient bismuth-based semiconductor photocatalysts. Besides, the main problems of the bismuth-based semiconductor photocatalysts are discussed, and the direction of development of the bismuth-based semiconductor photocatalysts is pointed out.

Contents
1 Introduction
2 Morphology and structure control
2.1 Synthesis of photocatalysts with special morphology
2.2 Porous structure
2.3 Highly active crystal face exposing
3 Noble metal depositing
4 Metal ion doping
5 Nonmetal doping
5.1 Carbon doping
5.2 Nitrogen doping
5.3 Graphene composite
5.4 Anion doping
5.5 Polymer modification
6 Semiconductor composite
7 Conclusion and outlook

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238: 37.
[2] Fujihira M, Satoh Y, Osa T. Nature, 1981, 293: 206.
[3] Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Envrion. Sci. Technol., 1998, 32: 726.
[4] Konstantinou I K, Albanis T A. Appl. Catal. B: Environ., 2004, 49: 1.
[5] Zhao X, Xu T G, Yao W G, Zhang C, Zhu Y F. Appl. Catal. B: Environ., 2007, 72: 92.
[6] Ke D N, Peng T Y, Ma L, Cai P, Jiang P. Appl. Catal. A: Gen., 2008, 350: 111.
[7] Cheng H F, Huang B B, Liu Y Y, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 9729.
[8] Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T. Chem. Mater., 2010, 22: 3079.
[9] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. J. Colloid. Interf. Sci., 2009, 333: 242.
[10] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[11] Xiao X, Zhang W D. J. Mater. Chem., 2010, 20: 5866.
[12] Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[13] YU J, Kudo A. Adv. Funct. Mater., 2006, 16: 2163.
[14] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl. Catal. B: Environ., 2006, 66: 100.
[15] Ren J, Wang W Z, Zhang L, Chang J, Hu S. Catal. Commun., 2009, 10: 1940.
[16] Shimodaira Y, Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2006, 110: 17790.
[17] Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[18] Yao W F, Wang H, Xu X H, Cheng X F, Huang J, Shang S X, Yang X N, Wang M. Appl. Catal. A: Gen., 2003, 243: 185.
[19] Zou Z G, Ye J H, Arakawa H. Mater. Sci. Eng. B, 2001, 79: 83.
[20] Tang J W, Zou Z G, Ye J H. Angew. Chem. Int. Ed., 2004, 43: 4463.
[21] Wang Z L, Song J H. Science, 2006, 312: 242.
[22] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim E, Yan Y Q. Adv. Mater., 2003, 15: 353.
[23] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Chem. Eur. J., 2009, 15: 1776.
[24] Cheng H F, Huang B B, Lu J B, Wang Z Y, Xu B, Qin X Y, Zhang X Y, Dai Y. Phys. Chem. Chem. Phys., 2010, 12: 15468.
[25] Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[26] Zhou L, Wang W Z, Zhang L S, Xu H L, Zhu W. J. Phys. Chem. C, 2007, 111: 13659.
[27] Ren L, Jin L, Wang J B, Yang F, Qiu M Q, Yu Y. Nanotechnology, 2009, 20: 115603.
[28] Yin W Z, Wang W Z, Shang M, Zhou L, Sun S M, Wang L. Eur. J. Inorg. Chem., 2009, 4379.
[29] Sun Y F, Wu C Z, Long R, Cui Y, Zhang S D, Xie Y. Chem. Commun., 2009, 4542.
[30] Sun S M, Wang W Z, Zhou L, Xu H L. Ind. Eng. Chem. Res., 2009, 48: 1735.
[31] Zhao Y, Xie Y, Zhu X, Yan S, Wang S X. Chem. Eur. J., 2008, 14: 1601.
[32] Zheng Y, Wu J, Duan F, Xie Y. Chem. Lett., 2007, 36: 520.
[33] Kudo A, Hijii S. Chem. Lett., 1999, 1103.
[34] Zhang G K, Lü F, Li M, Yang J L, Zhang X Y, Huang B B. J. Phys. Chem. Solids, 2010, 71: 579.
[35] Zhang Z J, Wang W Z, Shang M, Yin W Z. J. Hazard. Mater., 2010, 177: 1013.
[36] Zhou L, Wang W Z, Zhang L S. J. Mol. Catal., 2007, 268: 195.
[37] Alfaro S O, Martínez-de la Cruz A. Appl. Catal. A, 2010, 383: 128.
[38] Zhang L S, Wang W Z, Chen Z G, Zhou L, Xu H L, Zhu W. J. Mater. Chem., 2007, 17: 2526.
[39] Zhang L S, Wang W Z, Zhou L, Xu H L. Small, 2007, 3: 1618.
[40] Zhang C, Zhu Y F. Chem. Mater., 2005, 17: 3537.
[41] Xia J X, Li H M, Luo Z J, Xu H, Wang K, Yin S, Yan Y S. Mater. Chem. Phys., 2010, 121: 6.
[42] Zhang L S, Wang H L, Chen Z G, Wong P K, Liu J S. Appl. Catal. B: Environ., 2011, 106: 1.
[43] Wu J, Duan F, Zheng Y, Xie Y. J. Phys. Chem. C, 2007, 111: 12866.
[44] Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl. Catal. B: Environ., 2010, 98: 138.
[45] Bi J H, Wu L, Li J, Li Z H, Wang X X, Fu X Z. Acta Materialia, 2007, 55: 4699.
[46] Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. J. Mater. Chem., 2011, 21: 887.
[47] Cheng H F, Huang B B, Yang K S, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Phys. Chem., 2010, 11: 2167.
[48] Zhao T Y, Zai J T, Xu M, Zou Q, Su Y Z, Wang K X, Qian X F. CrystEngComm, 2011, 13: 4010.
[49] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[50] Kong L D, Chen H H, Hua W M, Zhang S C, Chen J M. Chem. Commun., 2008, 4977.
[51] Li G S, Zhang D Q, Yu J C. Chem. Mater., 2008, 20: 3983.
[52] Sun S M, Wang W Z, Zhang L. J. Mater. Chem., 2012, 22: 19244.
[53] Xi G C, Ye J H. Chem. Commun., 2010, 46: 1893.
[54] Wang D, Jiang H F, Zong X, Xu Q, Ma Y, Li G L. Chem. Eur. J., 2011, 17: 1275.
[55] Sun Y F, Xie Y, Wu C Z, Zhang S D, Jiang S S. Nano Res., 2010, 3: 620.
[56] Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yan S C, Zou Z G. ACS Appl. Mater. Interfaces, 2011, 3: 3594.
[57] Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[58] Zheng Y, Duan F, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2010, 317: 34.
[59] Ge L. J. Mol. Catal. A: Chem., 2008, 282: 62.
[60] Ge L. Mater. Chem. Phys., 2008, 107: 465.
[61] Wang D J, Xue G L, Zhen Y Z, Fu F, Li D S. J. Mater. Chem., 2012, 22: 4751.
[62] Zhang X F, Zhang Y B, Quan X, Chen S. J. Hazard. Mater., 2009, 167: 911.
[63] Zhu G Q, Que W X, Zhang J. J. Alloy. Compd., 2011, 509: 9479.
[64] Li R H, Chen W X, Kobayashi H, Ma C X. Green Chem., 2010, 12: 212.
[65] Gurunathan K. Int. J. Hydrogen Energ., 2004, 29: 933.
[66] Xie J M, Lü X M, Chen M, Zhao G Q, Song Y Z, Lu S S. Dyes Pigments, 2008, 77: 43.
[67] Wu X H, Qin W, Li L, Guo Y, Xie Z Y. Catal. Commun., 2009, 10(5): 600.
[68] Xu H, Li H M, Wu C D, Chu J Y, Yan Y S, Shu H M, Gu Z. J. Hazard. Mater., 2008, 153: 877.
[69] Xu H, Li H, Wu C, Chu J, Yan Y, Shu H. Mater. Sci. Eng. B, 2008, 147: 52.
[70] Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y. J. Phys. Chem. B, 2006, 110: 20211.
[71] Yao W, Iwai H, Ye J. Dalton Trans., 2008, 1426.
[72] Chatchai P, Murakami Y, Kishioka S, Nosaka A Y, Nosaka Y. Electrochim. Acta, 2009, 54: 1147.
[73] Jiang H, Nagai M, Kobayashi K. J. Alloys Compd., 2009, 24: 821.
[74] Zhang A, Zhang J. J. Hazard. Mater., 2010, 173: 265.
[75] Zhang L W, Man Y, Zhu Y F. ACS Catal., 2011, 1: 841.
[76] Xiao Q, Zhang J, Xiao C, Tan X. Catal. Commun., 2008, 9: 1247.
[77] Tian Y, Zhang L, Zhang J. J. Alloys Compd., 2012, 537: 24.
[78] Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599.
[79] Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. J. Phys. Chem. C, 2008, 112: 17835.
[80] Wang Z Z, Qi Y J, Qi H Y, Lu C J, Wang S M. J. Mater. Sci. Mater. Electron., 2010, 21: 523.
[81] Hou Y, Xue J Q, Huang Z M, Li T X, Ge Y J, Chu J H. Thin Solid Films, 2008, 517: 901.
[82] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119: 106.
[83] Li Y, Liu J, Huang X, Yu J. Dalton Trans., 2010, 39: 3420.
[84] Duan F, Zheng Y, Chen M Q. Mater. Lett., 2011, 65: 191.
[85] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41: 6234.
[86] Zhang Y, Yu J Q, Wang H W, Sun M M, Bu Y Y, Yu D S, Li W B. J. Nanotechnol., 2011, 2011: 702130.
[87] Dong F, Sun Y J, Fu M, Ho W K, Lee S C, Wu Z B. Langmuir, 2012, 28: 766.
[88] Lai K R, Wei W, Zhu Y T, Guo M, Dai Y, Huang B B. J. Solid State Chem., 2012, 187: 103.
[89] Ng Y H, Iwase A, Kudo A, Amal R. J. Phys. Chem. Lett., 2010, 1: 2607.
[90] Gao E P, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887.
[91] Wang P F, Ao Y H, Wang C, Hou J, Qian J. Carbon, 2012, 50: 5256.
[92] Ai Z H, Ho W K, Lee S C. J. Phys. Chem. C, 2011, 115: 25330.
[93] Song S Y, Wei G, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Dalton Trans., 2012, 41: 10472.
[94] Tu X M, Luo S L, Chen G X, Li J H. Chem. Eur. J., 2012, 18: 14359.
[95] Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Environ. Sci. Technol., 2008, 42: 2085.
[96] Zhang K, Zhang D Q, Liu J, Ren K X, Luo H, Peng Y J, Li G S, Yu X B. CrystEngComm, 2012, 14: 700.
[97] Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147.
[98] Shang M, Wang W Z, Sun S M, Ren J, Zhou L, Zhang L. J. Phys. Chem. C, 2009, 113 (47): 20228.
[99] Hou J G, Cao R, Jiao S Q, Zhu H M, Kumar R V. Appl. Catal. B: Environ., 2011, 104: 399.
[100] Duan F, Zhang Q H, Shi D J, Chen M Q. Appl. Surf. Sci., 2013, 268: 129.
[101] Xiao Q, Zhang J, Xiao C, Tian X. Catal. Commun., 2008, 9: 1247.
[102] Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. J. Catal., 2009, 262: 144.
[103] Cheng H F, Huang B B, Wang P, Wang Z Y, Lou Z Z, Wang J P, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2011, 47: 7054.
[104] Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Chem. Eur. J., 2011, 17: 9342.
[105] Zhang Z J, Wang W Z, Wang L, Sun S M. ACS Appl. Mater. Interfaces, 2012, 4: 593.
[106] Colón G, López S M, Hidalgo M C, Navío J A. Chem. Commun., 2010, 46: 4809.
[107] Hou J G, Wang Z, Jiao S Q, Zhu H M. CrystEngComm, 2012, 14: 5923.
[108] Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett A I, Chen J. ACS Appl. Mater. Interfaces, 2012, 4: 3718.
[109] Cheng H F, Huang B B, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 97.

[1] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.