中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 394-402 DOI: 10.7536/PC130759 Previous Articles   Next Articles

• Review •

Functional POSS-Containing Polymers and Their Applications

Zhang Kaiqiang1, Li Bo1, Zhao Yunhui*1, Li Hui1,2, Yuan Xiaoyan*1   

  1. 1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072;
    2. Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 51273146, 51103061)

PDF ( 2996 ) Cited
Export

EndNote

Ris

BibTeX

Polyhedral oligomeric silsesquioxanes (POSS) are silsesquioxane molecules with a special cage-like nanoscaled organic/inorganic hybrid structure. Among them, octa-silsesquioxanes have been mostly investigated. Compared with other inorganic agents, the structure of a rigid, cubic inorganic silica core and eight corner organic groups endow POSS possesses unique physical properties and chemical reactivities. The corner substituents, identical or different, can be used to design and prepare POSS-containing hybrid polymers. Owing to the special structure, functional POSS-containing polymers can be prepared through physical mixing or chemical copolymerization. With the development of advanced polymer-synthesis methods including "click" chemistry, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, well-defined POSS-containing hybrid polymers have been obtained, such as star-shaped, branch or block polymers, which has aroused extensive interests in recent years. Based on the nature of POSS, the main routes for synthesizing the functional POSS-containing polymers are briefly reviewed in this paper. Furthermore, applications of POSS-containing polymers are particularly introduced including constructing superhydrophobic films or surfaces for fabrics or anti-icing, developing amphiphilic polymers, and taking advantage of POSS as a building block for shape memory polymers. The challenges of POSS-containing polymers are also proposed based on the current progress. Finally, the research trends of the POSS-containing polymers are prospected.

Contents
1 Introduction
2 POSS-containing polymeric surfaces
2.1 Omniphobic POSS-containing polymers
2.2 POSS-containing coatings for anti-icing
3 Amphiphilic POSS-containing polymers
4 POSS-containing shape memory polymers
5 Conclusion

CLC Number: 

[1] Judeinstein P, Sanchez C J. Mater. Chem., 1996, 6(4): 511.
[2] Phillips S H, Haddad T S, Tomczak S J. Curr. Opin. Solid State Mater. Sci., 2004, 8(1): 21.
[3] Tanaka K, Chujo Y. J. Mater. Chem., 2012, 22(5): 1733.
[4] Zhang W, Müller A H E. Prog. Polym. Sci., 2013, 38(8): 1121.
[5] Ayandele E, Sarkar B, Alexandridis P. Nanomaterials, 2012, 2(4): 445.
[6] Kawakami Y, Kakihana Y, Miyazato A, Tateyama S, Hoque M A. Adv. Polym. Sci., 2011, 235, 185.
[7] Wang F K, Lu X H, He C B. J. Mater. Chem., 2011, 21(9): 2775.
[8] Li G, Wang L, Ni H, Pittman C U. J. Inorg.Organomet. Polym., 2001, 11(3): 123.
[9] Laine R M. J. Mater. Chem., 2005, 15(35/36): 3725.
[10] Jian W, Mather P T. Polym. Rev., 2009, 49(1): 25.
[11] Pescarmona P P, Maschmeyer T. Aust. J. Chem., 2001, 54(10): 583.
[12] Cordes D B, Lickiss P D, Rataboul F. Chem. Rev., 2010, 110(4): 2081.
[13] Zhang W, Wang S, Li X, Yuan J, Wang S. Eur. Polym. J., 2012, 48(4): 720.
[14] Kim D G, Kang H, Han S, Lee J C. ACS Appl. Mater. Inter., 2012, 4(11): 5898.
[15] Wang D, Xue L, Li L, Deng B, Feng S, Liu H, Zhao X. Macromol. Rapid. Commun., 2013, 34(10): 861.
[16] Nischang I, Brüggemann O, Teasdale I. Angew. Chem. Int. Ed., 2011, 50(20): 4592.
[17] Chaikittisilp W, Kubo M, Moteki T, Sugawara-Narutaki A, Shimojima A, Okubo T. J. Am. Chem. Soc., 2011, 133(35): 13832.
[18] Lichtenhan J D, Feher F J, Schwab J J, Zheng S. US 6933345, 2005.
[19] Yang D, Gao D, Zeng C, Jiang J, Xie M R. React. Funct. Polym., 2011, 71(11): 1096.
[20] Ishida K, Hortensius R, Luo X, Mather P T. J. Polym. Sci., Part B: Polym. Phys., 2012, 50(6): 387.
[21] Pyun J, Matyjaszewski K. Chem. Mater., 2001, 13(10): 3436.
[22] Ni Y, Zheng S. Macromolecules, 2007, 40(19): 7009.
[23] Lee W, Ni S, Deng J, Kim B S, Satija S K, Mather P T, Esker A R. Macromolecules, 2007, 40(3): 682.
[24] Kim B S, Mather P T. Macromolecules, 2002, 35(22): 8378.
[25] Matejka L, Strachota A, Pleštil J, Whelan P, Steinhart M, Šlouf M. Macromolecules, 2004, 37(25): 9449.
[26] Kuo S W, Chang F C. Prog. Polym. Sci., 2011, 36(12): 1649.
[27] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Science, 2007, 318(5856): 1618.
[28] Meuler A J, Chhatre S S, Nieves A R, Mabry J M, Cohen R E, McKinley G H. Soft Matter, 2011, 7(21): 10122.
[29] Yao X, Song Y L, Jiang L. Adv. Mater., 2011, 23(6): 719.
[30] Dodiuk H, Kenig S, Dotan A. J. Adhes. Sci. Technol., 2012, 26(4/5): 701.
[31] Xue Y H, Wang H X, Yu D S, Feng L F, Dai L M, Wang X G, Lin T. Chem. Commun., 2009 (42): 6418.
[32] Misra R, Fu B X, Morgan S E. J. Polym. Sci. Part B: Polym. Phys., 2007, 45(17): 2441.
[33] Turri S, Levi M. Macromol. Rapid Commun., 2005, 26(15): 1233.
[34] Turri S, Levi M. Macromolecules, 2005, 38(13): 5569.
[35] Mabry J M, Vij A, Iacono S T, Viers B D. Angew. Chem. Int. Ed., 2008, 47(22): 4137.
[36] Xu J W, Li X, Cho C M, Toh L C, Shen L, Mya Y K, Lu X H, He C B. J. Mater. Chem., 2009, 19(27): 4740.
[37] Iacono S T, Budy S M, Smith D W, Mabry J M. J. Mater. Chem., 2010, 20(15): 2979.
[38] Iacono S T, Budy S M, Mabry J M, Simth D W. Macromolecules, 2007, 40(26): 9517.
[39] Dodiuk H, Rios P F, Dotan A, Kenig S. Polym. Adv. Technol., 2007, 18(9): 746.
[40] Rios P F, Dodiuk H, Kenig S, McCarthy S, Dotan A. Polym. Adv. Technol., 2008, 19(11): 1684.
[41] Dong F, Ha C S. Macromol. Res., 2011, 19(2): 101.
[42] Mammeri F, Bonhomme C, Ribot F, Babonneau F, Dirè S. Chem. Mater., 2009, 21(18): 4163.
[43] Xue Y H, Liu Y, Lu F, Qu J, Chen H, Dai L M. J. Phys. Chem. Lett., 2012, 3(12): 1607.
[44] Ramirez S M, Diaz Y J, Sahagun C M, Duff M W, Lawal O B, Iacono S T, Mabry J M. Polym. Chem., 2013, 4(7): 2230.
[45] Gao Y, He C, Qing F L. J. Polym. Sci. Part A: Polym. Chem., 2011, 49(24): 5152.
[46] Gao Y, He C, Huang Y, Qing F L. Polymer, 2010, 51(25): 5997.
[47] Xue C H, Ma J Z. J. Mater. Chem. A, 2013, 1(13): 4146.
[48] Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T. Angew. Chem. Int. Ed., 2011, 50(48): 11433.
[49] Wang H, Zhou H, Gestos A, Fang J, Niu H, Ding J, Lin T. Soft Matter, 2013, 9(1): 277.
[50] Cao L, Jones A K, Sikka V K, Wu J, Gao D. Langmuir, 2009, 25(21): 12444.
[51] Xiao J, Chaudhuri S. Langmuir, 2012, 28(9): 4434.
[52] Meuler A J, Smith J D, Varanasi K K, Mabry J M, McKinley G H, Cohen R E. ACS Appl. Mater. Inter., 2010, 2(11): 3100.
[53] Yu D, Zhao Y, Li H, Qi H, Li B, Yuan X. Prog. Org. Coat., 2013, 76(10): 1435.
[54] Wu J, Ge Q, Mather P T. Macromolecules, 2010, 43(18): 7637.
[55] Wu J, Ge Q, Burke K A, Mather P T. Mater. Res. Soc. Symp. Proc., 2005, 847: 93
[56] Knischka R, Dietsche F, Hanselmann R, Frey H, Mü-lhaupt R. Langmuir, 1999, 15(14): 4752.
[57] Deng J, Polidan J T, Hottle J R, Farmer-Creely C E, Viers B D, Esker A R. J. Am. Chem. Soc., 2002, 124(51): 15194.
[58] Kim B S, Mather P T. Macromolecules, 2006, 39(26): 9253.
[59] Kim B S, Mather P T. Polymer, 2006, 47(17): 6202.
[60] Hussain H, Tan B H, Mya K Y, Liu Y, He C B, Davis T P. J. Polym. Sci. Part A: Polym. Chem., 2010, 48(1): 152.
[61] Hussain H, Tan B H, Seah G L, Liu Y, He C B, Davis T. Langmuir, 2010, 26(14): 11763.
[62] Tan B H, Hussain H, He C B. Macromolecules, 2011, 44(3): 622.
[63] Pu Y J, Chang S, Yuan H, Wang G, He B, Gu Z W. Biomaterials, 2013, 34(14): 3658.
[64] Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng S Z D, Zhang W B. Macromolecules, 2012, 45(20): 8126.
[65] Zhang W B, Li Y, Li X, Dong X, Yu X, Wang C L, Wesdemiotis C, Quirk R P, Cheng S Z D. Macromolecules, 2011, 44(8): 2589.
[66] La Y H, Sooriyakumaran R, McCloskey B D, Allen D R, Freeman D B, Al-Rasheed R. J. Membr. Sci., 2012, 401: 306.
[67] Lee K M, Knight P T, Chung T, Mather P T. Macromolecules, 2008, 41(13): 4730.
[68] Filion T M, Xu J, Prasad M L, Song J. Biomaterials, 2011, 32(4): 985.
[69] Xu J, Song J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(17): 7652.
[70] Xu J, Song J. Biomedical Engineering-Frontiers and Challenges. Fazel-Rezai R, Ed.In Tech, 2011. 126.
[71] Jeon H G, Mather P T, Haddad T S. Polym. Int., 2000, 49(5): 453.
[72] Mather P T, Jeon H G, Haddad T S. Polymer Preprints, 2000, 41(1): 528.
[73] Alvarado-Tenorio B, Romo-Uribe A, Mather P T. Macromolecules, 2011, 44(14): 5682.
[74] Mya K Y, Gose H B, Pretsch T, Bothe M, He C. J. Mater. Chem., 2011, 21(13): 4827.

[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[3] Cuiping Zhou, Qiming Liu, Xuan Zhao, Chunsheng Li, Hui Li, Shuxiang Zhang. The Preparation and Anti-Icing Properties of Flexible Surfaces [J]. Progress in Chemistry, 2019, 31(7): 1056-1066.
[4] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[5] Xia Yong, Yao Hongtao, Miao Zhihui, Wang Fang, Qi Zhengjian, Sun Yu. Preparation and Application of Silicone Materials Based on Click Chemistry [J]. Progress in Chemistry, 2015, 27(5): 532-538.
[6] Zhang Wen-Bin, Wang Xiao-Man, Wang Xiao-Wei, Liu Dong, Han Shuai-Yuan, Cheng Stephen Z. D.. Giant Molecules Based on Nano-Atoms [J]. Progress in Chemistry, 2015, 27(10): 1333-1342.
[7] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.
[8] Luo Weiang, Jiang Binjie, Cheng Ling, Xu Yiting, Chen Xudong, Dai Lizong. Application of Fluorescent Probe Technique in Study of Polymer Self-Assembly [J]. Progress in Chemistry, 2013, 25(10): 1713-1725.
[9] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[10] You Shusen, Yang Wantai, Yin Meizhen. Synthesis and Applications of Stimulus-Responsive Functional Polymers [J]. Progress in Chemistry, 2012, 24(11): 2198-2211.
[11] Yao Min, Wang Jiajun, Gu Xueping, Feng Lianfang. Synthesis and Application of Dendrimers Based on Polyhedral Oligomeric Silsesquioxanes [J]. Progress in Chemistry, 2012, 24(0203): 405-413.
[12] . Fluorescence Technique in Studies of Amphiphilic Polymer [J]. Progress in Chemistry, 2010, 22(0203): 458-464.
[13] Jianhai Xu,Mei Li,Yan Zhao,Qinghua Lu**. Advanced of Wetting Behavior Research on the Superhydrophobic Surface with Micro- and Nano-Structures [J]. Progress in Chemistry, 2006, 18(11): 1425-1433.
[14] Qiwei Pan Xinghe Fan Xiaofang Chen Qifeng Zhou . Progress in Hybrid Materials Based on Polyhedral Oligomeric Silsesquioxanes [J]. Progress in Chemistry, 2006, 18(05): 616-621.
[15] Qiang Yang1, Li Wang1**, Weidong Xiang2, Chiliang Wang1, Junfeng Zhou1. Stabilization and Its Mechanisms of the Metal Nanoparticles/Polymer Systems [J]. Progress in Chemistry, 2006, 18(0203): 290-297.