中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (09): 1544-1552 DOI: 10.7536/PC130718 Previous Articles   Next Articles

The Role of Nrf2 in Carcinogenesis

Wang Xiu Jun*1, Li Xin2, Tang Xiuwen*2   

  1. 1. Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China;
    2. Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
Richhtml ( 1 ) PDF ( 2914 ) Cited
Export

EndNote

Ris

BibTeX

The nuclear factor erythroid-2 related factor 2 (Nrf2) is a pivotal activator of genes encoding cytoprotective and detoxifying enzymes that protect against oxidative and eletrophilic stress. Under normal condition, Nrf2 is localized in the cytoplasm binding to Kelch-like ECH-associated protein 1 (KEAP1), which facilitates the degradation of Nrf2 via the ubiquitin proteasome pathway. Under stress conditions, oxidants or electrophiles abrogate the interaction between KEAP1 with Nrf2, resulting in increased nuclear accumulation of Nrf2 and the transcriptional induction of target genes. Activation of Nrf2 pathway is crucial for cancer chemoprevention. However, over-expression of Nrf2 has been found in many types of cancer, facilitating tumor growth and resistance to anticancer therapy. This article summarises recent progress in understanding the regulation of Nrf2 activity, and the new development in finding small molecules modulating Nrf2/ARE signalling pathway.

Contents
1 Introduction
2 Dual roles of Nrf2 in carcinogenesis
2.1 Activation of Nrf2 is important for cancer chemoprevention
2.2 The dependence of tumour cells on Nrf2
3 The complexity of Nrf2 signaling
3.1 KEAP1-independent Nrf2 degradation
3.2 p21 activates Nrf2 through direct interacting with NRF2
3.3 p62 activates Nrf2 through interacting with KEAP1
3.4 Oncogenes activate Nrf2
3.5 Nuclear receptors inhibit Nrf2 activity
4 Small molecules modulate Nrf2/ARE signalling pathway
4.1 The methods used for identifying novel Nrf2 activators
4.2 The Nrf2 inhibitors
5 Concluding remarks

CLC Number: 

[1] Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel J D, Yamamoto M. Genes Dev., 1999, 13 (1): 76—86
[2] Nioi P, Nguyen T, Sherratt P J, Pickett C B. Mol. Cell Biol., 2005, 25 (24): 10895—10906
[3] Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Genes Cells, 2001, 6 (10): 857—868
[4] McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes J D. J. Biol. Chem., 2004, 279 (30): 31556—31567
[5] Rada P, Rojo A I, Chowdhry S, McMahon M, Hayes J D, Cuadrado A. Mol. Cell Biol., 2011, 31 (6): 1121—1133
[6] Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y, Luo L, Hayes J D, Wang X J, Tang X. Cancer Res., 2013, 73 (10): 3097—3108
[7] Friling R S, Bergelson S, Daniel V. Proc. Natl. Acad. Sci. U. S. A., 1992, 89 (2): 668—672
[8] Rushmore T H, Pickett C B. J. Biol. Chem., 1990, 265 (24): 14648—14653
[9] Ramos-Gomez M, Kwak M K, Dolan P M, Itoh K, Yamamoto M, Talalay P, Kensler T W. Proc. Natl. Acad. Sci. U. S. A., 2001, 98 (6): 3410—3415
[10] Itoh K, Mimura J, Yamamoto M. Antioxid Redox Signal, 2010, 13: 1665—1678
[11] Zhang D D. Antioxid Redox Signal, 2010, 13: 1623—1626
[12] Hirayama A, Yoh K, Nagase S, Ueda A, Itoh K, Morito N, Hirayama K, Takahashi S, Yamamoto M, Koyama A. Free Radic. Biol. Med., 2003, 34 (10): 1236—1242
[13] Lee J M, Chan K, Kan Y W, Johnson J A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101 (26): 9751—9756
[14] Ma Q, Battelli L, Hubbs A F. Am. J. Pathol., 2006, 168 (6): 1960—1974
[15] Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N, Kobayashi M, Morito N, Koyama A, Yamamoto M, Takahashi S. Kidney Int., 2001, 60 (4): 1343—1353
[16] Rangasamy T, Cho C Y, Thimmulappa R K, Zhen L, Srisuma S S, Kensler T W, Yamamoto M, Petrache I, Tuder R M, Biswal S. J. Clin. Invest., 2004, 114 (9): 1248—1259
[17] Cho H Y, Jedlicka A E, Reddy S P, Kensler T W, Yamamoto M, Zhang L Y, Kleeberger S R. Am. J. Respir. Cell Mol. Biol., 2002, 26 (2): 175—182
[18] Fahey J W, Haristoy X, Dolan P M, Kensler T W, Scholtus I, Stephenson K K, Talalay P, Lozniewski A. Proc. Natl. Acad. Sci. U. S. A., 2002, 99 (11): 7610—7615
[19] Ramos-Gomez M, Dolan P M, Itoh K, Yamamoto M, Kensler T W. Carcinogenesis, 2003, 24 (3): 461—467.
[20] Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H, Yamamoto M. Cancer Res., 2004, 64 (18): 6424—6431
[21] Kensler T W, Chen J G, Egner P A, Fahey J W, Jacobson L P, Stephenson K K,Ye L, Coady J L, Wang J B, Wu Y, Sun Y, Zhang Q N, Zhang B C, Zhu Y R, Qian G S, Carmella S G, Hecht S S, Benning L, Gange S J, Groopman J D, Talalay P. Cancer Epidemiol. Biomarkers Prev., 2005, 14 (11): 2605—2613
[22] Wang J S, Shen X, He X, Zhu Y R, Zhang B C, Wang J B, Qian G S, Kuang S Y, Zarba A, Egner P A, Jacobson L P, Muñoz A, Helzlsouer K J, Groopman J D, Kensler T W. J. Natl. Cancer Inst., 1999, 91 (4): 347—354
[23] Hayes J D, McMahon M. Trends Biochem. Sci., 2009, 34 (4): 176—188
[24] Li Q K, Singh A, Biswal S, Askin F, Gabrielson E. J. Hum. Genet., 2011, 56(3): 230—234
[25] Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S. Cancer Res., 2008, 68 (5): 1303-1309
[26] Padmanabhan B, Tong K I, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang M I, Kobayashi A, Yokoyama S, Yamamoto M. Mol. Cell, 2006, 21(5): 689—700
[27] Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi S. Gastroenterology, 2008, 135(4): 1358—1368, e4
[28] Singh A, Misra V, Thimmulappa R K, Lee H, Ames S, Hoque M O, Herman J G, Baylin S B, Sidransky D, Gabrielson E, Brock M V, Biswal S. PLoS Med., 2006, 3 (10): e420
[29] Kim Y R, Oh J E, Kim M S, Kang M R, Park S W, Han J Y, Eom H S, Yoo N J, Lee S H. J. Pathol., 2010, 220(4): 446—451
[30] Shibata T, Ohta T, Tong K I, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(36): 13568—13573
[31] Mitsuishi Y, Motohashi H, Yamamoto M. Front Oncol., 2012, 2: 200
[32] DeNicola G M, Karreth F A, Humpton T J, Gopinathan A, Wei C, Frese K, Mangal D, Yu K H, Yeo C J, Calhoun E S, Scrimieri F, Winter J M, Hruban R H, Iacobuzio-Donahue C, Kern S E, Blair I A, Tuveson D A. Nature, 2011, 475 (7354): 106—109
[33] Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H. Cancer Cell, 2012, 22 (1): 66—79
[34] Lau A, Villeneuve N F, Sun Z, Wong P K, Zhang D D. Pharmacol. Res., 2008, 58 (5/6): 262—270
[35] Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes J D. Oncogene, 2012, DOI: 10.1038/onc.2012.388
[36] Rojo A I, Medina-Campos O N, Rada P, Zuniga-Toala A, Lopez-Gazcon A, Espada S, Pedraza-Chaverri J, Cuadrado A. Free Radic. Biol. Med., 2012, 52(2): 473—487
[37] Chen W, Sun Z, Wang X J, Jiang T, Huang Z, Fang D, Zhang D D.Mol. Cell, 2009, 34 (6): 663—673
[38] Komatsu M, Ichimura Y. FEBS Lett., 2010, 584 (7): 1374—1378
[39] Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. Nat. Cell Biol., 2010, 12 (3): 213—223
[40] Brown S L, Sekhar K R, Rachakonda G, Sasi S, Freeman M L. Cancer Res., 2008, 68(2): 364—368
[41] Faraonio R, Vergara P, Di Marzo D, Pierantoni M G, Napolitano M, Russo T, Cimino F. J. Biol. Chem., 2006, 281(52): 39776—39784
[42] Dhakshinamoorthy S, Jain A K, Bloom D A, Jaiswal A K. J. Biol. Chem., 2005, 280(17): 16891—16900
[43] Zhou W, Lo S C, Liu J H, Hannink M, Lubahn D B. Mol. Cell Endocrinol., 2007, 278 (1/2): 52—62
[44] Wang X J, Hayes J D, Henderson C J, Wolf C R. Proc. Natl. Acad. Sci. U. S. A., 2007, 104 (49): 19589—19594
[45] Prochaska H J, Santamaria A B. Anal. Biochem., 1988, 169(2): 328—336
[46] Fahey J W, Dinkova-Kostova A T, Stephenson K K, Talalay P. Methods Enzymol., 2004, 382: 243—258
[47] Dinkova-Kostova A T, Fahey J W, Talalay P. Methods Enzymol., 2004, 382: 423—448
[48] Wang X J, Hayes J D, Wolf C R. Cancer Res., 2006, 66(22): 10983—10994
[49] Ahn Y H, Hwang Y, Liu H, Wang X J, Zhang Y, Stephenson K K, Boronina T N, Cole R N, Dinkova-Kostova A T, Talalay P, Cole P A. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(21): 9590—9595
[50] Dinkova-Kostova A T, Talalay P, Sharkey J, Zhang Y, Holtzclaw W D, Wang X J, David E, Schiavoni K H, Finlayson S, Mierke D F, Honda T. J. Biol. Chem., 2010, 285 (44): 33747—33755
[51] Wu K C, McDonald P R, Liu J J, Chaguturu R, Klaassen C D. PLoS One, 2012, 7(10): e4468652
[52] Zhu M, Baek H, Liu R, Song A, Lam K, Lau D. J. Biomed. Biotechnol., 2009, 2009: 420194
[53] Hur W, Sun Z, Jiang T, Mason D E, Peters E C, Zhang D D, Luesch H, Schultz P G, Gray N S.Chem. Biol., 2010, 17 (5): 537—547
[54] Pandey M K, Kumar S, Thimmulappa R K, Parmar V S, Biswal S, Watterson A C. Eur. J. Pharm. Sci., 2011, 43 (1/2): 16—24
[55] Smirnova N A, Haskew-Layton R E, Basso M, Hushpulian D M, Payappilly J B, Speer R E, Ahn Y H, Rakhman I, Cole P A, Pinto J T, Ratan R R, Gazaryan I G. Chem. Biol., 2011, 18 (6): 752—765
[56] Xie W, Pao C, Graham T, Dul E, Lu Q, Sweitzer T D, Ames R S, Li H. Assay Drug Dev. Technol., 2012, 10(6): 514—524
[57] Hu C, Nikolic D, Eggler A L, Mesecar A D, van Breemen R B. Anal. Biochem., 2012, 421 (1): 108—114
[58] Lieder F, Reisen F, Geppert T, Sollberger G, Beer H D, auf dem Keller U, Schäfer M, Detmar M, Schneider G, Werner S. J. Biol. Chem., 2012, 287 (39): 33001—33013
[59] Liu G, Eggler A L, Dietz B M, Mesecar A D, Bolton J L, Pezzuto J M, van Breemen R B. Anal. Chem., 2005, 77(19): 6407—6414
[60] Williamson T P, Amirahmadi S, Joshi G, Kaludov N K, Martinov M N, Johnson D A, Johnson J A. Chem. Biol. Drug Des., 2012, 80(6): 810—820
[61] De Luca L M. Faseb J., 1991, 5(14): 2924—2933
[62] Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang X J. Free Radic. Biol. Med., 2011, 50(11): 1599—1609
[63] Ren H Y, Tang X W. 浙江大学学报( 医学版)(Journal of Zhejiang University(Medical Sciences)), 2011, 40(5): 508—514
[64] Ohnuma T, Matsumoto T, Itoi A, Kawana A, Nishiyama T, Ogura K, Hiratsuka A. Biochem. Biophys. Res. Commun., 2011, 413(4): 623—629
[65] Ren D, Villeneuve N F, Jiang T, Wu T, Lau A, Toppin H A, Zhang D D. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(4): 1433—1438
[66] Gao A M, Ke Z P, Wang J N, Yang J Y, Chen S Y, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis, 2013

[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[3] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[4] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[5] Tingyi Yan, Guangyao Zhang, Kun Yu, Mengjie Li, Lijun Qu, Xueji Zhang. Smartphone-Based Point-of-Care Testing [J]. Progress in Chemistry, 2022, 34(4): 884-897.
[6] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[7] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[8] Yuyang Lei, Fangfang Li, Jie Ouyang, Minjie Li, Lianghong Guo. Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425.
[9] Lili Feng, Yiman Liu, Lin Yao, Rui Sun, Junhui He. Infrared Stealth and Multi-Band Compatible Stealth Materials [J]. Progress in Chemistry, 2021, 33(6): 1044-1058.
[10] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[11] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[12] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[13] Xiaoyu Yang, Shanshan Jia, Juan Zhang, Yinghua Qi, Xuewen Hu, Baojie Shen, Hongying Zhong. Photo Ionization and Dissociation in Mass Spectrometry for Structural Identification of Biological Molecules [J]. Progress in Chemistry, 2021, 33(12): 2316-2333.
[14] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[15] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
Viewed
Full text


Abstract

The Role of Nrf2 in Carcinogenesis