中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 178-192 DOI: 10.7536/PC130662 Previous Articles   Next Articles

• Review •

Application of Synchrotron FTIR Imaging for Cells

Ling Shengjie, Shao Zhengzhong, Chen Xin*   

  1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 10979022)

PDF ( 2611 ) Cited
Export

EndNote

Ris

BibTeX

Thanks to the ultra-high brightness and high spatial resolution of synchrotron infrared light source, synchrotron radiation based Fourier-transform infrared (SR-FTIR) microspectroscopy is widely used in multidisciplinary field. Especially in the biomedical field, SR-FTIR has been widely employed in the structural and functional characterization of unstained and unlabeled biomolecules as a non-destructive technique. In the recent ten years, with the development of SR-FTIR microspectroscopic technique, biochemists and spectral scientists have expanded their interests from the tissue level FTIR imaging (tissue FTIR imaging, which normally focus on imaging a tissue section) to single cell level FTIR imaging (cell FTIR imaging, which focus on imaging of a single functional or live cell). However, there are several problems need to be overcome in cell FTIR imaging. For example, (1) water in cell and/or in medium has strong absorption in amide Ⅰ band; (2) uneven surface of cell leads to Mie scattering of FTIR spectra; (3) complexity and uncertainty of FTIR spectra of cell affect the validity and accuracy of the data analysis. On the other hand, biochemists and spectral scientists have designed fruitful strategies to solve these problems. Therefore, we summarized the studies about cell SR-FTIR imaging in the past ten years in this review. We firstly describe the sample preparation, experimental design and data analysis methods in these published works, and then put forward the problems and the corresponding solutions on cell SR-FTIR imaging. We believe with the development of multibeam synchrotron source/focal plane array (FPA) system, SR-FTIR imaging will become a very promising tool to detect structures and functions not only for cells, but also for many other materials in different fields.

Contents
1 Introduction
2 Structural information from FTIR spectra of cells
3 Sample preparation and experimental design
3.1 ATR-FTIR imaging on cells
3.2 Transmittance FTIR imaging on cells
4 Data analysis methods
4.1 Univariate imaging
4.2 Multivariate imaging
5 Experimental problems and corresponding solving strategies
6 Applications of synchrotron FTIR imaging on cells
6.1 Study of protein phosphorylation in living single PC12 cells with synchrotron FTIR microspectro-scopy
6.2 Real-time monitoring of bacterial activity in biofilms with synchrotron FTIR microspectro-scopy
7 Outlook

CLC Number: 

[1] Wong P T T, Rigas B. Appl. Spectrosc., 1990, 44: 1715.
[2] Wong P T T, Papavassiliou E D, Rigas B. Appl. Spectrosc., 1991, 45: 1563.
[3] Wong P T T, Wong R K, Caputo T A, Godwin T A, Rigas B. PNAS, 1991, 88: 10988.
[4] Jamin N, Dumas P, Moncuit J, Fridman W H, Teillaud J L, Carr G L, Williams G P. PNAS, 1998, 95: 4837.
[5] Miller L M, Dumas P. Biochim. Biophys. Acta-Biomembr., 2006, 1758: 846.
[6] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X), 黄郁芳(Huang Y F). 化学进展(Progress in Chemistry), 2008, 20(11): 1768.
[7] Petibois C, Piccinini M, Guidi M C, Marcelli A. J. Synchrot. Radiat., 2010, 17: 1.
[8] Carr G L, Hanfland M, Williams G P. Rev. Sci. Instrum., 1995, 66: 1643.
[9] Carr G L, Reffner J A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1490.
[10] Reffner J A, Martoglio P A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1298.
[11] 凌盛杰(Ling S J), 黄郁芳(Huang Y F), 黄蕾(Huang L), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2013, 25(5): 821.
[12] Martin M C, Schade U, Lerch P, Dumas P. Trac-Trend Anal. Chem., 2010, 29: 453.
[13] Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J. C. R. Phys., 2009, 10: 590.
[14] Marcelli A, Cricenti A, Kwiatek W M, Petibois C. Biotechnol. Adv., 2012, 30: 1390.
[15] Quaroni L, Zlateva T. Analyst, 2011, 136: 3219.
[16] Leslie M. Science, 2011, 331: 24.
[17] Arriaga E A. Anal. Bioanal. Chem., 2009, 393: 73.
[18] Quaroni L, Zlateva T, Bedolla D, Massaro S, Torre V. ChemPhysChem, 2008, 9: 1380.
[19] Reece J B, Urry L A, Cain M L, Wasserman S A, Minorsky P V, Jackson R B. Campbell Biology. 9th ed. San Francisco: Benjamin Cummings, 2010. 92.
[20] Miller L M, Dumas P. Curr. Opin. Struct. Biol., 2010, 20: 649.
[21] Walther F J, DavidCu R, Leung C, Bruni R, HernandezJuviel J, Gordon L M, Waring A J. Pediatr. Res., 1996, 39: 938.
[22] Dumas P, Miller L. J. Biol. Phys., 2003, 29: 201.
[23] Naumann D. Encyclopedia of Analytical Chemistry(ed Mayers R A). Weinheim: John Wiely & Sons Ltd, 2002. 102.
[24] Kazarian S G, Chan K L A. Analyst, 2013, 138: 1940.
[25] Kuimova M, Chan K L A, Kazarian S G. Appl. Spectrosc., 2009, 63: 164.
[26] Tobin M J, Puskar L, Barber R L, Harvey E C, Heraud P, Wood B R, Bambery K R, Dillon C T, Munro K L. Vib. Spectrosc., 2010, 53: 34.
[27] Nasse M J, Ratti S, Giordano M, Hirschmugl C J. Appl. Spectrosc., 2009, 63: 1181.
[28] Holman H Y N, Miles R, Hao Z, Wozei E, Anderson L M, Yang H. Anal. Chem., 2009, 81: 8564.
[29] Trevisan J, Angelov P P, Carmichael P L, Scott A D, Martin F L. Analyst, 2012, 137: 3202.
[30] Jackson M, Mantsch H H. Crit. Rev. Biochem. Mol. Biol., 1995, 30: 95.
[31] Lasch P, Haensch W, Naumann D, Diem M. Biochim. Biophys. Acta-Mol. Basis Dis., 2004, 1688: 176.
[32] Lasch P, Diem M, Hansch W, Naumann D. J. Chemom., 2006, 20: 209.
[33] Diem M, Matthaus C, Chernenko T, Romeo M J, Miljkovic M, Bird B, Schubert J, Papamarkakis K, Laver N. Infraredand Raman Spectroscopic Imaging(eds Salzer R, Siesler H W). Weinheim: Wiley-VCH, 2009. 173.
[34] Wolfgang K H, Leopold S. Applied Multivariate Statistical Analysis. 3rd ed. Heidelberg: Springer, 2012. 269.
[35] Rosi F, Federici A, Brunetti B G, Sgamellotti A, Clementi S, Miliani C. Anal. Bioanal. Chem., 2011, 399: 3133.
[36] Venyaminov S Y, Prendergast F G. Anal. Biochem., 1997, 248: 234.
[37] Miljkovic M, Romeo M, Matthaus C, Diem M. Biopolymers, 2004, 74: 172.
[38] Mossa D A, Keeseb M, Pepperkok R. Vib. Spectrosc., 2005, 38: 185.
[39] Kotting C, Gerwert K. ChemPhysChem, 2005, 6: 881.
[40] Holman H Y N, Wozei E, Lin Z, Comolli L R, Ball D A, Borglin S, Fields M W, Hazen T C, Downing K H. PNAS, 2009, 106: 12599.
[41] 陈新(Chen X), 周丽(Zhou L), 邵正中(Shao Z Z), 周平(Zhou P), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2003, 61(4): 625.
[42] Chen X, Shao Z Z, Knight D P, Vollrath F. Proteins, 2007, 68: 223.
[43] Chen X, Knight D P, Shao Z Z. Soft Matter, 2009, 5: 2777.
[44] Wetzel D L, Slatkin D N, Levine S M. Cell Mol. Biol., 1998, 44: 15.
[45] Petibois C, Cestelli-Guidi M, Piccinini M, Moenner M, Marcelli A. Anal. Bioanal. Chem., 2010, 397: 2123.
[46] Matthaus C, Bird B, Miljkovic M, Chernenko T, Romeo M, Diem M. Method Cell Biol., 2008, 89: 275.
[47] Nasse M J, Bellehumeur B, Ratti S, Olivieri C, Buschke D, Squirrell J, Eliceiri K, Ogle B, Patterson C S, Giordano M, Hirschmugl C J. Vib. Spectrosc., 2012, 60: 10.
[48] Hirschmugl C J, Gough K M. Appl. Spectrosc., 2012, 66: 475.
[49] Kohler A, Sule-Suso J, Sockalingum G D, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, van Pittius D G, Parkes G, Martens H. Appl. Spectrosc., 2008, 62: 259.
[50] Bassan P, Byrne H J, Bonnier F, Lee J, Dumas P, Gardner P. Analyst, 2009, 134: 1586.
[51] Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P. J. Biophotonics, 2010, 3: 609.
[52] Bassan P, Kohler A, Martens H, Lee J, Byrne H J, Dumas P, Gazi E, Brown M, Clarke N, Gardner P. Analyst, 2010, 135: 268.
[53] Nasse M J, Walsh M J, Mattson E C, Reininger R, Kajdacsy-Balla A, Macias V, Bhargava R, Hirschmugl C J. Nat. Methods, 2011, 8: 413.
[54] Rak M, Del Bigio M R, Mai S, Westaway D, Gough K. Biopolymers, 2007, 87: 207.
[55] Kastyak-Ibrahim M Z, Nasse M J, Rak M, Hirschmugl C, Del Bigio M R, Albensi B C, Gough K M. Neuroimage, 2012, 60: 376.
[56] Stavitski E, Smith R J, Bourassa M W, Acerbo A S, Carr G L, Miller L M. Anal. Chem., 2013, 85: 3599.
[57] Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T, Bill M, Conrad M E, Tom L M, Chavarria K L, Alusi T R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty R, Sonnenthal E L, D'Haeseleer P, Holman H Y N, Osman S, Lu Z, Van Nostrand J D, Deng Y, Zhou J Z, Mason O U. Science, 2010, 330: 204.
[58] Jilkine K, Gough K M, Julian R, Kaminskyj S G W. J. Inorg. Biochem., 2008, 102: 540.
[59] Heraud P, Wood B R, Tobin M J, Beardall J, McNaughton D. FEMS Microbiol. Lett., 2005, 249: 219.
[60] Holman H N, Martin M C. Blakely E A, Bjornstad K, McKinney W R. Biopolymers, 2000, 57: 329.
[61] Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K. Neurobiol Aging, 2006, 27: 228.
[62] Chen L, Holman H Y N, Hao Z, Bechtel H A, Martin M C, Wu C B, Chu S. Anal. Chem., 2012, 84: 4118.
[63] Walsh M J, Fellous T G, Hammiche A, Lin W R, Fullwood N J, Grude O, Bahrami F, Nicholson J M, Cotte M, Susini J, Pollock H M, Brittan M, Martin-Hirsch P L, Alison M R, Martin F L. Stem Cells, 2008, 26: 108.
[64] Tobin M J, Chesters M A, Chalmers J M, Rutten F J M, Fisher S E, Symonds I M, Hitchcock A, Allibone R, Dias-Gunasekara S. Faraday Discuss., 2004, 126: 27.
[65] Gazi E, Dwyer J, Lockyer N P, Miyan J, Gardner P, Hart C A, Brown M D, Clarke N W. Vib. Spectrosc., 2005, 38: 193.
[66] Gazi E, Lockyer N P, Vickerman J C, Gardner P, Dwyer J, Hart C A, Brown M D, Clarke N W, Miyan J. Appl. Surf. Sci., 2004, 231: 452.
[67] Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S. Science, 2002, 298: 1912.
[68] Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Science, 2002, 295: 1487.
[69] Holman H Y N, Bechtel H A, Hao Z, Martin M C. Anal. Chem., 2010, 82: 8757.
[70] Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. Science, 2010, 328: 627.
[71] 费翔(Fei X). 复旦大学博士论文(Doctoral dissertation of Fudan Universtiy), 2013.
[72] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2011, 12: 3344.
[73] Ling S J, Qi Z M, Knight D P, Huang Y F, Huang L, Zhou H, Shao Z Z, Chen X. Biomacromolecules, 2013, 14: 1885.
[74] Wang X, Chen X L, Qi Z M, Liu X C, Li W Z, Wang S Y. Spectrochim Acta A, 2012, 91: 285.
[75] 王欣(Wang X), 陈先良(Chen X L), 戚泽明(Qi Z M), 刘省存(Liu X C), 刘刚(Liu G), 黄大可(Huang D K), 田扬超(Tian Y C). 化学学报(Acta Chimica Sinica), 2011, 69: 1491.
[76] Wang X, Qi Z M, Liu X, Wang S, Li C, Liu G, Xiong Y, Li T, Tao J, Tian Y C. Cancer Epidemiol, 2010, 34: 453.
[77] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Polym. Chem., 2013, 4, 5401.
[78] Wang X, Qi Z M, Wang S Y, Liu G, Gao H L, Tian Y C. Spectrochim. Acta A, 2011, 79: 1660.
[79] Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv. Mater., 2009, 21: 366.
[80] Yan J P, Zhou G Q, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2010, 11: 1.
[81] Ling S J, Zhou L, Zhou W, Shao Z Z, Chen X. Mater. Lett., 2012, 81: 13.
[82] Zhou H, Shao Z Z, Chen X. Chinese J. Polym. Sci., 2014, 32: 29.

[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[5] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[8] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[9] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[10] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[11] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[12] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[13] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[14] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[15] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.