中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 10-18 DOI: 10.7536/PC130661 Previous Articles   Next Articles

• Review •

Development and Application of Hydrophilic Interaction Liquid Chromatographic Stationary Phases

Shen Aijin, Guo Zhimou, Liang Xinmiao*   

  1. Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21135005, 21005077)

PDF ( 4111 ) Cited
Export

EndNote

Ris

BibTeX

As an alternative high performance liquid chromatography technology, hydrophilic interaction liquid chromatography (HILIC) plays an important role in the separation of highly polar and ionic compounds such as amino acids, carbohydrates, peptides and so on. The development of HILIC stationary phases, which are considered as the core of chromatographic technology, is of great importance for the improvement of chromatographic separation selectivity and efficiency, influencing the application and generalization of HILIC. To date, a great variety of commercial and academic HILIC materials with abundant functional groups have been presented. According to the functional groups of chromatographic materials, the development of silica-based HILIC stationary phases including unmodified silica, amino-based, cyano-based, diol-based, amide-based, poly(succinimide)-based, saccharides-based and zwitterion-based stationary phases are reviewed in the present article. Meanwhile, the typical applications of HILIC stationary phases in polar drugs separation, bioanalysis, proteomics, metabolomics, etc. are included. With increasing diversity of HILIC materials, the selection of appropriate HILIC stationary phase for the resolution of complex compounds becomes difficult. The development of systematic test samples and methods to access the separation selectivity is of great value for understanding the interaction mechanism of HILIC stationary phases. Thus, the investigation involving test samples to evaluate separation efficiencies and selectivities in HILIC is also reviewed.

Contents
1 Introduction
2 Development and application of hydrophilic interaction chromatographic materials
2.1 Unmodified silica
2.2 Amino-based stationary phase
2.3 Cyano- and diol-based stationary phase
2.4 Amide-based stationary phase
2.5 Poly(succinimide)-based stationary phase
2.6 Saccharides-based stationary phase
2.7 Zwitterion-based stationary phase
3 Chromatographic evaluation of hydrophilic interaction chromatographic materials
4 Conclusion and outlook

CLC Number: 

[1] Alpert A J. J. Chromatogr., 1990, 499: 177.
[2] Zhu B Y, Mant C T, Hodges R S. J. Chromatogr., 1991, 548: 13.
[3] Strege M A. Anal. Chem., 1998, 70: 2439.
[4] Olsen B A. J. Chromatogr. A, 2001, 913: 113.
[5] Tolstikov V V, Fiehn O. Anal. Biochem., 2002, 301: 298.
[6] Karlsson G, Winge S, Sandberg H. J. Chromatogr. A, 2005, 1092: 246.
[7] Hemstrom P, Irgum K. J. Sep. Sci., 2006, 29: 1784.
[8] Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. J. Chromatogr. A, 2008, 1184: 474.
[9] Guo Y, Gaiki S. J. Chromatogr. A, 2011, 1218: 5920.
[10] Jandera P. Anal. Chim. Acta, 2011, 692: 1.
[11] Karatapanis A E, Fiamegos Y C, Stalikas C D. J. Chromatogr. A, 2011, 1218: 2871.
[12] 李瑞萍(Li R P), 黄骏雄(Huang J X). 化学进展(Progress in Chemistry), 2006, 18: 1508.
[13] 王媛(Wang Y), 顾惠新(Gu H X), 路鑫(Lu X), 许国旺(Xu G W). 色谱(Chinese Journal of Chromatography), 2008, 26: 649.
[14] 郭志谋(Guo Z M), 张秀莉(Zhang X L), 徐青(Xu Q), 梁鑫淼(Liang X M). 色谱(Chinese Journal of Chromatography), 2009, 27: 675.
[15] 梁鑫淼(Liang X M). 色谱(Chinese Journal of Chromatography), 2011, 29: 191.
[16] 郭亚丽(Guo Y L), 袁琴(Yuan Q), 李瑞萍(Li R P), 黄应平(Huang Y P). 色谱(Chinese Journal of Chromatography), 2012, 30: 232.
[17] Gianotti V, Chiurminatto U, Mazzucco E, Gosetti F, Bottaro M, Frascarolo P, Gennaro M C. J. Chromatogr. A, 2008, 1185: 296.
[18] Al-Rimawi F. Talanta, 2009, 79: 1368.
[19] Kawano S I. Rapid Commun. Mass Spectrom., 2009, 23: 907.
[20] Dejaegher B, Heyden Y V. J. Sep. Sci., 2010, 33: 698.
[21] Jian W, Edom R W, Xu Y, Weng N. J. Sep. Sci., 2010, 33: 681.
[22] Fontanals N, Marce R M, Borrull F. J. Chromatogr. A, 2011, 1218: 5975.
[23] Grumbach E S, Diehl D M, Neue U D. J. Sep. Sci., 2008, 31: 1511.
[24] Churms S C. J. Chromatogr. A, 1996, 720: 75.
[25] Linden J C, Lawhead C L. J. Chromatogr., 1975, 105: 125.
[26] Wu J, Bicker W, Lindner W. J. Sep. Sci., 2008, 31: 1492.
[27] Yoshida T. Anal. Chem., 1997, 69: 3038.
[28] Yoshida T. J. Biochem. Biophys. Methods, 2004, 60: 265.
[29] Yang Y, Boysen R I, Hearn M T W. J. Chromatogr. A, 2009, 1216: 5518.
[30] McNulty D E, Annan R S. Mol. Cell. Proteomics, 2008, 7: 971.
[31] Bicker W, Wu J, Yeman H, Albert K, Lindner W. J. Chromatogr. A, 2011, 1218: 882.
[32] Kotoni D, D'Acquarica I, Ciogli A, Villani C, Capitani D, Gasparrini F. J. Chromatogr. A, 2012, 1232: 196.
[33] Alpert A J. Anal. Chem., 2008, 80: 62.
[34] Mant C T, Hodges R S. J. Sep. Sci., 2008, 31: 2754.
[35] Mant C T, Hodges R S. J. Sep. Sci., 2008, 31: 1573.
[36] Lindner H, Sarg B, Helliger W. J. Chromatogr. A, 1997, 782: 55.
[37] Persson J, Hemstrom P, Irgum K. J. Sep. Sci., 2008, 31: 1504.
[38] Guo Z, Lei A, Zhang Y, Xu Q, Xue X, Zhang F, Liang X. Chem. Commun., 2007, 2491.
[39] Fu Q, Guo Z, Liang T, Zhang X, Xu Q, Liang X. Anal. Methods, 2010, 2: 217.
[40] Fu Q, Liang T, Zhang X, Du Y, Guo Z, Liang X. Carbohydr. Res., 2010, 345: 2690.
[41] Yu L, Li X, Guo Z, Zhang X, Liang X. Chem. Eur. J., 2009, 15: 12618.
[42] Qu Y Y, Xia S M, Yuan H M, Wu Q, Li M, Zou L J, Zhang L H, Liang Z, Zhang Y K. Anal. Chem., 2011, 83: 7457.
[43] Zhu J, Wang F J, Chen R, Cheng K, Xu B, Guo Z M, Liang X M, Ye M L, Zou H F. Anal. Chem., 2012, 84: 5146.
[44] Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X, Xue X, Liang X. Proteomics, 2012, 12: 3076.
[45] Moni L, Ciogli A, D'Acquarica I, Dondoni A, Gasparrini F, Marra A. Chem. Eur. J., 2010, 16: 5712.
[46] Huang H, Jin Y, Xue M, Yu L, Fu Q, Ke Y, Chu C, Liang X. Chem. Commun., 2009, 6973.
[47] Padivitage N L T, Armstrong D W. J. Sep. Sci., 2011, 34: 1636.
[48] Qiu H, Loukotkova L, Sun P, Tesarova E, Bosakova Z, Armstrong D W. J. Chromatogr. A, 2011, 1218: 270.
[49] Jiang W, Irgum K. Anal. Chem., 1999, 71: 333.
[50] Jiang W, Irgum K. Anal. Chem., 2002, 74: 4682.
[51] Jiang W, Fischer G, Girmay Y, Irgum K. J. Chromatogr. A, 2006, 1127: 82.
[52] Boersema P J, Divecha N, Heck A J R, Mohammed S. J. Proteome. Res., 2007, 6: 937.
[53] Cubbon S, Bradbury T, Wilson J, Thomas-Oates J. Anal. Chem., 2007, 79: 8911.
[54] Creek D J, Jankevics A, Breitling R, Watson D G, Barrett M P, Burgess K E V. Anal. Chem., 2011, 83: 8703.
[55] Di Palma S, Boersema P J, Heck A J R, Mohammed S. Anal. Chem., 2011, 83: 3440.
[56] Rodriguez-Gonzalo E, Garcia-Gomez D, Carabias-Martinez R. J. Chromatogr. A, 2011, 1218: 9055.
[57] Di Palma S, Mohammed S, Heck A J R. Nat. Protoc., 2012, 7: 2041.
[58] Zhang T, Creek D J, Barrett M P, Blackburn G, Watson D G. Anal. Chem., 2012, 84: 1994.
[59] Qiu H, Wanigasekara E, Zhang Y, Tran T, Armstrong D W. J. Chromatogr. A, 2011, 1218: 8075.
[60] Guo H Y, Liu R H, Yang J J, Yang B C, Liang X M, Chu C H. J. Chromatogr. A, 2012, 1223: 47.
[61] Shen A J, Guo Z M, Yu L, Cao L W, Liang X M. Chem. Commun., 2011, 47: 4550.
[62] Shen A, Guo Z, Cai X, Xue X, Liang X. J. Chromatogr. A, 2012, 1228: 175.
[63] Shen A, Li X, Dong X, Wei J, Guo Z, Liang X. J. Chromatogr. A, 2013, 1314: 63.
[64] Chirita R I, West C, Finaru A L, Elfakir C. J. Chromatogr. A, 2010, 1217: 3091.
[65] Gilar M, Jaworski A. J. Chromatogr. A, 2011, 1218: 8890.
[66] 郭志谋(Guo Z M). 中国科学院大连化学物理研究所博士论文(Doctoral Dissertation of Dalian Institute of Chemical Physics, Chinese Academy of Sciences), 2009.
[67] Pack B W, Risley D S. J. Chromatogr. A, 2005, 1073: 269.
[68] Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Anal. Chem., 2006, 78: 7632.
[69] Ikegami T, Fujita H, Horie K, Hosoya K, Tanaka N. Anal. Bioanal. Chem., 2006, 386: 578.
[70] Ye F G, Xie Z H, Wong K Y. Electrophoresis, 2006, 27: 3373.
[71] Ikegami T, Horie K, Jaafar J, Hosoya K, Tanaka N. J. Biochem. Biophys. Methods, 2007, 70: 31.
[72] Huang G H, Zeng W C, Lian Q Y, Xie Z H. J. Sep. Sci., 2008, 31: 2244.
[73] Ibrahim M E A, Zhou T, Lucy C A. J. Sep. Sci., 2010, 33: 773.
[74] Que A H, Konse T, Baker A G, Novotny M V. Anal. Chem., 2000, 72: 2703.
[75] Que A H, Novotny M V. Anal. Chem., 2002, 74: 5184.
[76] Hosoya K, Hira N, Yamamoto K, Nishimura M, Tanaka N. Anal. Chem., 2006, 78: 5729.
[77] Jiang Z J, Smith N W, Ferguson P D, Taylor M R. Anal. Chem., 2007, 79: 1243.
[78] Jiang Z J, Reilly J, Everatt B, Smith N W. J. Chromatogr. A, 2009, 1216: 2439.
[79] Tijunelyte I, Babinot J, Guerrouache M, Valincius G, Carbonnier B. Polymer, 2012, 53: 29.
[80] Wang X, Zheng Y Q, Zhang C Y, Yang Y Z, Lin X C, Huang G H, Xie Z H. J. Chromatogr. A, 2012, 1239: 56.
[81] Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H. Anal. Chem., 2012, 84: 2721.

[1] Ying Xu, Tingting Gao, Qixiao Wang, Yang Qu, Hongfei Liu, Yuanrong Xin. Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules [J]. Progress in Chemistry, 2018, 30(8): 1112-1120.
[2] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.
[3] Sun Xiaojie, Xing Jun, Zhai Yuxiu, Li Zhaoxin. The Development of Ionic Liquids as Stationary Phases for Gas Chromatography [J]. Progress in Chemistry, 2014, 26(04): 647-656.
[4] Weng Xilun, Bao Zongbi, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong. Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase [J]. Progress in Chemistry, 2014, 26(0203): 415-423.
[5] Xie Shengming, Yuan Liming. Metal-Organic Frameworks Used as Chromatographic Stationary Phases [J]. Progress in Chemistry, 2013, 25(10): 1763-1770.
[6] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[7] Wang Zhiwen Ma Xianghui Chen Xun Zhao Xueming Chen Tao. Current Methods and Advances in Microbial Metabolomics [J]. Progress in Chemistry, 2010, 22(01): 163-172.
[8] Wang Jiangshan Kong Hongwei Lu Xin Zhao Xinjie Xu Guowang. Separation Science in the Context of Metabonomics: Current Platforms and Future Trends [J]. Progress in Chemistry, 2009, 21(11): 2388-2396.
[9] Cao Jing Nie Aiying Chen Yaohan Wang Sheng Lu Haojie Yang Pengyuan. Separation and Enrichment of Glycoproteins/Glycopeptides [J]. Progress in Chemistry, 2009, 21(09): 1888-1894.
[10] Jia Huikun,Zhang Yinan,Feng Jinhui,Xu Ping*. Latest Key Technologies and the Applications of Industrial Microbiology [J]. Progress in Chemistry, 2007, 19(0708): 1223-1228.
[11] Li Li,Zi Min,Ren Chaoxing,Yuan Liming **. The Development of Chiral Stationary Phase in Gas Chromatography [J]. Progress in Chemistry, 2007, 19(0203): 393-403.
[12] Yongzhu He1,3|Hao Pang1,3|Bing Liao1,2*. Progress in Cellulose-Based Chiral Stationary Phases [J]. Progress in Chemistry, 2006, 18(0708): 957-965.
[13] Zhou Xingwang. New Frontier in Chemical Biology: Chemical Proteomics [J]. Progress in Chemistry, 2003, 15(06): 518-.
[14] Lu Yanbing,Xu Weijian*. Applications of Polymers in Micellar Electrok inetic Chromatography [J]. Progress in Chemistry, 1999, 11(01): 92-.