中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 140-151 DOI: 10.7536/PC130648 Previous Articles   Next Articles

• Review •

Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition

Fu Chao1,2, Zhu Yutian*2, Shi Dean*1   

  1. 1. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062;
    2. Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China for Youth Science Funds (No. 21104083), the National Natural Science Foundation of China for General Program (No. 51173037), the Scientific Development Program of Jilin Province (No. 202101007) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

PDF ( 1064 ) Cited
Export

EndNote

Ris

BibTeX

Block copolymer is a special type of copolymer in which two or more segments of polymers (blocks) are joined together by covalent bond. It has received more and more attention because it can combine the excellent properties from different polymers into an excellent functional polymer material. However, it is still a challenging task to separate and characterize the block copolymers. As a new type of chromatographic technique, liquid chromatography at the critical condition (LCCC) can make a block of the block copolymer "chromatographically invisible" at the critical condition of the corresponding homopolymer, so that the retention of the block copolymer is determined solely by the other block that is not under critical condition. In this review, the mechanism and approach of LCCC technique are introduced. The recently studies for LCCC analysis of block copolymer are systemically reviewed. The limitation and future development of LCCC method are also discussed.

Contents
1 Introduction
2 Mechanism of LCCC separation of block copolymers
3 LCCC separation of block copolymers
3.1 Selection of solvent
3.2 Selection of stationary phase
3.3 Adjustment of temperature
4 Applications of LCCC separation of block copolymers
5 Computer simulations for the LCCC analysis of block copolymers
6 Conclusions and future developments

CLC Number: 

[1] Retsos H, Margiolaki I, Messaritaki A, Anastasiadis S H. Macromolecules, 2001, 34: 5295.
[2] Retsos H, Anastasiadis S H, Pispas S, Mays J W, Hadjichristidis N. Macromolecules, 2003, 37: 524.
[3] Luo Y, Wang X, Zhu Y, Li B G, Zhu S. Macromolecules, 2010, 43: 7472.
[4] Attard G S, Glyde J C, Göltner C G. Nature, 1995, 378: 366.
[5] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33: 1088.
[6] Savi D? R, Luo L, Eisenberg A, Maysinger D. Science, 2003, 300: 615.
[7] Thurn-Albrecht T, Schotter J, Kästle G, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C, Tuominen M, Russell T. Science, 2000, 290: 2126.
[8] Kim S O, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Nature, 2003, 424: 411.
[9] Park I, Park S, Cho D, Chang T, Kim E, Lee K, Kim Y J. Macromolecules, 2003, 36: 8539.
[10] Tennikov M, Nefedov P, Lazareva M, Frenkel S Y. Vysokomol. Sojed. (Moscow), 1977, A19: 657
[11] Belenky B G, Valchikhina M D, Vakhtina I A, Gankina E S, Tarakanov O G. J. Chromatogr. A, 1976, 129: 115.
[12] Belenky B G, Gankina E S, Tennikov M B, Vilenchik L Z. J. Chromatogr. A, 1978, 147: 99.
[13] Skvortsov A M, Belen'kii B G, Gankina E S, Tennikov M B. Polym. Sci. USSR, 1978, 20: 768.
[14] Skvortsov A M, Gorbunov A A. Polym. Sci. USSR, 1979, 21: 371.
[15] Gorbunov A A, Zhulina E B, Skvortsov A M. Polymer, 1982, 23: 1133.
[16] Gorbunov A A, Skvortsov A M. Adv. Colloid Interface Sci., 1995, 62: 31.
[17] Entelis S, Evreinov V, Gorshkov A. Adv. Polym. Sci., 1986, 76: 129.
[18] Berek D. Macromol. Symp., 1996, 110: 33.
[19] Pasch H, Trathnigg B. HPLC of Polymers. Berlin: Springer Verlag, 1999. 151.
[20] Pasch H. In Polymer Analysis Polymer Physics. Berlin: Springer Berlin Heidelberg, 1997. 1.
[21] Pasch H, Gallot Y, Trathnigg B. Polymer, 1993, 34: 4986.
[22] Pasch H, Brinkmann C, Gallot Y. Polymer, 1993, 34: 4100.
[23] Pasch H, Augenstein M. Makromol. Chem., 1993, 194: 2533.
[24] Pasch H, Brinkmann C, Much H, Just U. J. Chromatogr. A, 1992, 623: 315.
[25] Lee W, Park S, Chang T. Anal. Chem., 2001, 73: 3884.
[26] Orelli S, Jiang W, Wang Y. Macromolecules, 2004, 37: 10073.
[27] Gong Y, Wang Y. Macromolecules, 2002, 35: 7492.
[28] Jiang W, Khan S, Wang Y. Macromolecules, 2005, 38: 7514.
[29] Gorbunov A A, Vakhrushev A V. J. Chromatogr. A, 2010, 1217: 4825.
[30] Falkenhagen J, Weidner S. Anal. Chem., 2009, 81: 282.
[31] Ljubi T S, Pahovnik D, igon M, agar E. Scientific World J., 2012, 1.
[32] Brun Y. J. Liq. Chromatogr. Relat. Technol., 1999, 22: 3027.
[33] Chang T. In Liquid Chromatography/ FTIR Microspectroscopy/ Microwave Assisted Synthesis. Berlin: Springer Berlin Heidelberg, 2003. 1.
[34] Pasch H. Macromol. Symp., 1996, 110: 107.
[35] Svensson B, Olsson U, Alexandridis P. Langmuir, 2000, 16: 6839.
[36] Zimina T M, Kever Y Y, Melenevskaya Y Y, Zgonnik V N, Belen'kii B G. Polym. Sci. USSR, 1991, 33: 1250.
[37] Malik M, Ahmed H, Trathnigg B. Anal. Bioanal. Chem., 2009, 393: 1797.
[38] Im K, Park H W, Kim Y, Ahn S, Chang T, Lee K, Lee H J, Ziebarth J, Wang Y. Macromolecules, 2008, 41: 3375.
[39] Al Samman M, Radke W, Khalyavina A, Lederer A. Macromolecules, 2010, 43: 3215.
[40] Berek D. Mater. Res. Innov., 2001, 4: 365.
[41] Baran K, Laugier S, Cramail H. Int. J. Polym. Anal. Char., 2000, 6: 123.
[42] Inglis A J, Barner-Kowollik C. Polym. Chem., 2011, 2: 126.
[43] Olesik S. Anal. Bioanal. Chem., 2004, 378: 43.
[44] Berek D. Anal. Bioanal. Chem., 2010, 396: 421.
[45] Evreinov V, Gorshkov A, Prudskova T, Gur'yanova V, Pavlov A, Malkin A Y, Entelis S. Polym. Bull., 1985, 14: 131.
[46] Lee H, Lee W, Chang T, Choi S, Lee D, Ji H, Nonidez W K, Mays J W. Macromolecules, 1999, 32: 4143.
[47] Lee H J, Chang T Y, Lee D S, Shim M S, Ji H N, Nonidez W K, Mays J W. Anal. Chem., 2001, 73: 1726.
[48] Gorshkov A, Much H, Becker H, Pasch H, Evreinov V, Entelis S. J. Chromatogr. A, 1990, 523: 91.
[49] Pasch H, Zammert I. J. Liq. Chromatogr. Relat. Technol., 1994, 17: 3091.
[50] Zimina T M, Kever J J, Melenevskaya E Y, Fell A F. J. Chromatogr. A, 1992, 593: 233.
[51] Falkenhagen J, Much H, Stauf W, Müller A H E. Macromolecules, 2000, 33: 3687.
[52] Pasch H, Augenstein M, Trathnigg B. Macromol. Chem. Phys., 1994, 195: 743.
[53] Schmid C, Weidner S, Falkenhagen J, Barner-Kowollik C. Macromolecules, 2012, 45: 87.
[54] 钟亚兰(Zhong Y L), 蒋序林(Jiang X L). 化学进展(Progress in Chemistry), 2010, 22(4): 706.
[55] Baumgaertel A, Altunta?瘙塂 E, Schubert U S. J. Chromatogr. A, 2012, 1240: 1.
[56] van Hulst M, van der Horst A, Kok W T, Schoenmakers P J. J. Sep. Sci., 2010, 33: 1414.
[57] Macko T, Hunkeler D, Berek D. Macromolecules, 2002, 35: 1797.
[58] Girod M, Phan T N T, Charles L. Rapid Commun. Mass Spectrom, 2008, 22: 3767.
[59] Girod M, Phan T N T, Charles L. Rapid Commun. Mass. Sp, 2009, 23: 1476.
[60] Girod M, Beaudoin E, Charles L. Anal. Methods, 2009, 1: 128.
[61] Nefedov P, Zhmakina T. Polym. Sci. USSR, 1981, 23: 304.
[62] Baran K, Laugier S, Cramail H. Macromol. Chem. Phys., 1999, 200: 2074.
[63] Braun D, Esser E, Rasch H. Int. J. Polym. Anal. Ch., 1998, 4: 501.
[64] Berek D. Macromolecules, 1998, 31: 8517.
[65] Skvortsov A, Gorbunov A, Berek D, Trathnigg B. Polymer, 1998, 39: 423.
[66] Yun H, Olesik S V, Marti E H. J. Micro. Sep., 1999, 11: 53.
[67] Phillips S, Olesik S V. Anal. Chem., 2002, 74: 799.
[68] Souvignet I, Olesik S V. Anal. Chem., 1997, 69: 66.
[69] Yun H, Olesik S V, Marti E H. Anal. Chem., 1998, 70: 3298.
[70] Chang T, Lee H C, Lee W, Park S, Ko C. Macromol. Chem. Phys., 1999, 200: 2188.
[71] Kanazawa H, Sunamoto T, Matsushima Y, Kikuchi A, Okano T. Anal. Chem., 2000, 72: 5961.
[72] 赵贝贝(Zhao B B), 张艳(Zhang Y), 唐涛(Tang T), 王风云(Wang F Y), 张维冰(Zhang W B), 李彤(Li T). 化学进展(Progress in Chemistry), 2012, 24(1): 122.
[73] Hiller W, Pasch H, Sinha P, Wagner T, Thiel J, Wagner M, Müellen K. Macromolecules, 2010, 43: 4853.
[74] Abdulahad A I, Ryu C Y. J. Polym. Sci. Part B: Polym. Phys., 2009, 47: 2533.
[75] Hiller W, Sinha P, Pasch H. Macromol. Chem. Phys., 2009, 210: 605.
[76] Falkenhagen J, Much H, Stauf W, Müller A. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem. ), 1999, 40: 984.
[77] Mass V, Bellas V, Pasch H. Macromol. Chem. Phys., 2008, 209: 2026.
[78] Sinha P, Hiller W, Bellas V, Pasch H. J. Sep. Sci., 2012, 35: 1731.
[79] Malik M I, Sinha P, Bayley G M, Mallon P E, Pasch H. Macromol. Chem. Phys., 2011, 212: 1221.
[80] Park S, Ryu D Y, Kim J K, Ree M, Chang T. Polymer, 2008, 49: 2170.
[81] Lee W, Cho D, Chang T, Hanley K J, Lodge T P. Macromolecules, 2001, 34: 2353.
[82] Im K, Park H W, Kim Y, Chung B, Ree M, Chang T. Anal. Chem., 2007, 79: 1067.
[83] Min K, Gao H, Matyjaszewski K. J. Am. Chem. Soc., 2005, 127: 3825.
[84] Hiller W, Sinha P, Pasch H. Macromol. Chem. Phys., 2007, 208: 1965.
[85] Baran K, Laugier S, Cramail H. J. Chromatogr. B, 2001, 753: 139.
[86] Pasch H, Rode K. J. Chromatogr. A, 1995, 699: 21.
[87] Trathnigg B, Gorbunov A. Macromol. Symp., 2006, 237: 18.
[88] Trathnigg B. Polymer, 2005, 46: 9211.
[89] Malik M I, Trathnigg B, Kappe C O. Macromol. Chem. Phys., 2007, 208: 2510.
[90] Malik M I, Trathnigg B, Oliver Kappe C. Eur. Polym. J., 2009, 45: 899.
[91] Malik M I, Trathnigg B, Saf R. J. Chromatogr. A, 2009, 1216: 6627.
[92] Malik M I, Trathnigg B, Bartl K, Saf R. Anal. Chim. Acta, 2010, 658: 217.
[93] Lee W, Cho D, Chun B O, Chang T, Ree M. J. Chromatogr. A, 2001, 910: 51.
[94] Ahmed H, Trathnigg B, Kappe C O, Saf R. Eur. Polym. J., 2009, 45: 2338.
[95] Ahmed H, Trathnigg B, Kappe C O, Saf R. Eur. Polym. J., 2010, 46: 494.
[96] Fandrich N, Falkenhagen J, Weidner S M, Staal B, Thünemann A F, Laschewsky A. Macromol. Chem. Phys., 2010, 211: 1678.
[97] Baumgaertel A, Weber C, Fritz N, Festag G, Altuntas E, Kempe K, Hoogenboom R, Schubert U S. J. Chromatogr. A, 2011, 1218: 8370.
[98] Macko T, Hunkeler D. In Chromatography/FTIR Microspectroscopy/Microwave Assisted Synthesis. Berlin: Springer-Verlag Berlin, 2003. 61.
[99] Zimina T M, Fell A F, Castledine J B. Polymer, 1992, 33: 4129.
[100] Zimina T M, Kever Y Y, Melenevskaya Y Y, Zgonnik V N, Belenkii B G. Vysokomolekulyarnye Soedineniya Seriya A, 1991, 33: 1349.
[101] Jacquin M, Muller P, Lizarraga G, Bauer C, Cottet H, Théodoly O. Macromolecules, 2007, 40: 2672.
[102] Jacquin M, Muller P, Talingting-Pabalan R, Cottet H, Berret J, Futterer T, Théodoly O. J. Colloid Interf. Sci., 2007, 316: 897.
[103] Malik M I, Harding G W, Grabowsky M E, Pasch H. J. Chromatogr. A, 2012, 1244: 77.
[104] Schmid C, Falkenhagen J, Barner-Kowollik C. J. Polym. Sci., Part A: Pdym. Chem., 2011, 49: 1.
[105] Malik M I, Harding G W, Pasch H. Anal. Bioanal. Chem., 2012, 403: 601.
[106] Rollet M, Glé D, Phan T N T, Guillaneuf Y, Bertin D, Gigmes D. Macromolecules, 2012, 45: 7171.
[107] Ahmed H, Trathnigg B. J. Sep. Sci., 2009, 32: 1390.
[108] Malik M I, Trathnigg B, Kappe C O. J. Chromatogr. A, 2009, 1216: 1167.
[109] Malik M I, Trathnigg B. J. Sep. Sci., 2009, 32: 1771.
[110] Macko T, Brüll R, Zhu Y, Wang Y. J. Sep. Sci., 2010, 33: 3446.
[111] Yang X, Zhu Y, Wang Y. Polymer, 2013, 54: 3730.
[112] Ziebarth J D, Williams J, Wang Y. Macromolecules, 2008, 41: 4929.
[113] Patel B, Ziebarth J D, Wang Y. Macromolecules, 2010, 43: 2069.
[114] Ziebarth J D, Wang Y, Polotsky A, Luo M. Macromolecules, 2007, 40: 3498.
[115] Zhu Y, Ziebarth J, Macko T, Wang Y. Macromolecules, 2010, 43: 5888.
[116] Riess G. Prog. Polym. Sci., 2003, 28: 1107.

[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[5] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[6] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[7] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[8] He Wen, Ding Yuanju, Lu Zaijun, Yang Qifeng. Amphiphilic Block Copolymer Micelles for Medical Materials [J]. Progress in Chemistry, 2011, 23(5): 930-940.
[9] . Characterization of Polymers by High Performance Liquid Chromatography [J]. Progress in Chemistry, 2010, 22(04): 706-712.
[10] Li Di Zhang Long Fan Quli Huang Wei. Self-Assembly of Conjugated Rod-Coil Block Copolymers [J]. Progress in Chemistry, 2009, 21(12): 2660-2673.
[11] Qun Zhao,Peihong Ni** . Recent Progress in pH/Temperature-Responsive Amphiphilic Block Copolymers [J]. Progress in Chemistry, 2006, 18(06): 768-779.
[12] Zhou Junfeng,Wang Li*,Chen Tao,Wang Wei. Preparation of Nanomicelles through Self-Assembly of Amphiphilic Block Copolymers [J]. Progress in Chemistry, 2005, 17(06): 1102-1109.
[13] Dou Hongjing*,Sun Kang. Double-Hydrophilic Block Copolymers and Their Self-Assembly [J]. Progress in Chemistry, 2005, 17(05): 854-859.