中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 75-86 DOI: 10.7536/PC130647 Previous Articles   Next Articles

• Review •

Synthesis, Properties and Applications of Mesocrystals

Bu Fanxing, Du Chenjie, Jiang Jisen*   

  1. Department of Physics, Center for Functional Nanomaterials and Devices, East China Normal University, Shanghai 200241, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21173084)

PDF ( 2434 ) Cited
Export

EndNote

Ris

BibTeX

Mesocrystals are one kind of self-assembled superstructures from nanocrystals in crystallographic ordered way, often showing single-crystal-like electron diffraction behaviors. The formation process of mesocrystals imposes a great challenge to classic crystallization theory and their unique structural features of nanocrystals aggregations may create enhanced and new properties, which drive researchers to make extensive studies. This paper reviews the latest progress in the preparation methods, properties and applications of mesocrystals. The synthesis methods of mesocrystals mainly include coprecipitation, hydrothermal, solvothermal, topological conversion, electrochemical, dissolution and recrystallization methods. And catalytic, electrochemical, optical and electrical properties as well as biomedical applications of mesocrystals are exhibited. The formation process and structure-property relationships of mesocrystals are emphasized. Besides, some scientific issues about the preparations, properties and applications of mesocrystals are pointed out, and the outlook of further development in the field of mesocrystals is also given.

Contents
1 Introduction
2 Synthesis of mesocrystals
2.1 Coprecipitation methods
2.2 Hydrothermal methods
2.3 Solvothermal methods
2.4 Topological conversion methods
2.5 Electrochemical methods
2.6 Dissolution and recrystallization methods
3 Properties and applications of mesocrystals
3.1 Catalytic properties
3.2 Electrochemical properties
3.3 Optical and electrical properties
3.4 Biomedical applications
4 Conclusion and outlook

CLC Number: 

[1] Cölfen H, Antonietti M. Angew. Chem. Int. Ed., 2005, 44: 5576.
[2] Niederberger M, Colfen H. Phys. Chem. Chem. Phys., 2006, 8: 3271.
[3] Zhou L, O'Brien P. Small, 2008, 4: 1566.
[4] Song R Q, Cölfen H. Adv. Mater., 2010, 22: 1301.
[5] Fang J, Ding B, Gleiter H. Chem. Soc. Rev., 2011, 40: 5347.
[6] Cao A, Hu J, Wan L. Sci. China Chem., 2012, 42: 1642.
[7] Cai J, Qi L. Sci. China Chem., 2012, 55: 2318.
[8] Gebauer D, Völkel A, Cölfen H. Science, 2008, 322: 1819.
[9] Baumgartner J, Dey A, Bomans P H H, Le Coadou C, Fratzl P, Sommerdijk N A J M, Faivre D. Nat. Mater., 2013, 12: 310.
[10] Zhuang Z, Huang F, Lin Z, Zhang H. J. Am. Chem. Soc., 2012, 134: 16228.
[11] Xie S, Zhou X, Han X, Kuang Q, Jin M, Jiang Y, Xie Z, Zheng L. J. Phys. Chem. C, 2009, 113: 19107.
[12] Wang T, Zhuang J, Lynch J, Chen O, Wang Z, Wang X, LaMontagne D, Wu H, Wang Z, Cao Y C. Science, 2012, 338: 358.
[13] Wang T, Wang X, LaMontagne D, Wang Z, Wang Z, Cao Y C. J. Am. Chem. Soc., 2012, 134: 18225.
[14] Zhao Z, Zhang J, Dong F, Yang B. J. Colloid Interface Sci., 2011, 359: 351.
[15] Zhou L, O'Brien P. J. Phys. Chem. Lett., 2012, 3: 620.
[16] Wang T, Cölfen H, Antonietti M. J. Am. Chem. Soc., 2005, 127: 3246.
[17] Xu A W, Antonietti M, Cölfen H, Fang Y P. Adv. Funct. Mater., 2006, 16: 903.
[18] Xu A W, Antonietti M, Yu S H, Cölfen H. Adv. Mater., 2008, 20: 1333.
[19] Yu S H, Cölfen H, Tauer K, Antonietti M. Nat. Mater., 2005, 4: 51.
[20] Waltz F, Wißmann G, Lippke J, Schneider A M, Schwarz H C, Feldhoff A, Eiden S, Behrens P. Crystal Growth & Design, 2012, 12: 3066.
[21] Xu X, Yang H, Liu Y. CrystEngComm, 2012, 14: 5289.
[22] Sun S, Zhang X, Zhang J, Song X, Yang Z. Crystal Growth & Design, 2012, 12: 2411.
[23] Sun S, Zhang X, Zhang J, Wang L, Song X, Yang Z. CrystEngComm, 2013, 15: 867.
[24] Wang L, Tang K, Liu Z, Wang D, Sheng J, Cheng W. J. Mater. Chem., 2011, 21: 4352.
[25] Soare L C, Bowen P, Lemaitre J, Hofmann H. J. Phys. Chem. B, 2006, 110: 17763.
[26] Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Angew. Chem. Int. Ed., 2012, 51: 984.
[27] Hu M, Torad N L, Yamauchi Y. Eur. J. Inorg. Chem., 2012, 4795.
[28] Hu M, Belik A A, Imura M, Yamauchi Y. J. Am. Chem. Soc., 2012, 135: 384.
[29] Lenders J J M, Dey A, Bomans P H H, Spielmann J, Hendrix M M R M, de With G, Meldrum F C, Harder S. Sommerdijk N A J M. J. Am. Chem. Soc., 2011, 134: 1367.
[30] Liu Z, Wen X D, Wu X L, Gao Y J, Chen H T, Zhu J, Chu P K. J. Am. Chem. Soc., 2009, 131: 9405.
[31] Ye F, Peng Y, Chen G Y, Deng B, Xu A W. J. Phys. Chem. C, 2009, 113: 10407.
[32] Zhou L, Smyth-Boyle D, O'Brien P. J. Am. Chem. Soc., 2008, 130: 1309.
[33] Uchiyama H, Imai H. Crystal Growth & Design, 2010, 10: 1777.
[34] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113: 3345.
[35] Liu S, Yu J. J. Solid State Chem., 2008, 181: 1048.
[36] Liu Y, Zhu G, Ge B, Zhou H, Yuan A, Shen X. CrystEngComm, 2012, 14: 6264.
[37] Hu M, Jiang J S, Ji R P, Zeng Y. CrystEngComm, 2009, 11: 2257.
[38] Hu M, Jiang J S, Lin C C, Zeng Y. CrystEngComm, 2010, 12: 2679.
[39] Zhao J, Tan R, Guo Y, Lu Y, Xu W, Song W. CrystEngComm, 2012, 14: 4575.
[40] Cao A, Manthiram A. Phys. Chem. Chem. Phys., 2012, 14: 6724.
[41] Cai J, Ye J, Chen S, Zhao X, Zhang D, Chen S, Ma Y, Jin S, Qi L. Energy Environ. Sci., 2012, 5: 7575.
[42] Duan X, Mei L, Ma J, Li Q, Wang T, Zheng W. Chem. Commun., 2012, 48: 12204.
[43] Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L. J. Am. Chem. Soc., 2010, 133: 933.
[44] Liu Y, Shi J, Peng Q, Li Y. J. Mater. Chem., 2012, 22: 6539.
[45] Wang S S, Xu A W. CrystEngComm, 2013, 15: 376.
[46] Sun S, Chang X, Li Z. Mater. Charact., 2012, 73: 130.
[47] Li X, Ni C, Chen F, Lu X, Chen Z. J. Solid. State. Chem., 2009, 182: 2185.
[48] Wang X, Ma Y, Sugunan A, Qin J, Toprak M, Zhu B, Muhammed M. J. Nanopart. Res., 2011, 13: 5879.
[49] Pucci A, Willinger M G, Liu F, Zeng X, Rebuttini V, Clavel G, Bai X, Ungar G, Pinna N. ACS Nano, 2012, 6: 4382.
[50] Meng L-r, Chen W, Tan Y, Zou L, Chen C, Zhou H, Peng Q, Li Y. Nano Res., 2011, 4: 370.
[51] Figlarz M, Gerand B, Delahaye-Vidal A, Dumont B, Harb F, Coucou A, Fievet F. Solid State Ionics, 1990, 43: 143.
[52] Hu M, Belik A A, Sukegawa H, Nemoto Y, Imura M, Yamauchi Y. Chem. Asian J., 2011, 6: 3195.
[53] Wang F, Lu C, Qin Y, Liang C, Zhao M, Yang S, Sun Z, Song X. J. Power Sources, 2013, 235: 67.
[54] Hu M, Yamauchi Y. Chem. Asian J., 2011, 6: 2282.
[55] Xiong S, Chen J S, Lou X W, Zeng H C. Adv. Funct. Mater., 2012, 22: 861.
[56] Chen Y, Qu B, Mei L, Lei D, Chen L, Li Q, Wang T. J. Mater. Chem., 2012, 22: 25373.
[57] Yang Y, Yang Y, Wu H, Guo S. CrystEngComm, 2013, 15: 2608.
[58] Dang F, Hoshino T, Oaki Y, Hosono E, Zhou H, Imai H. Nanoscale, 2013, 5: 2352.
[59] Kalyani V, Vasile B S, Ianculescu A, Buscaglia M T, Buscaglia V, Nanni P. Crystal Growth & Design, 2012, 12: 4450.
[60] Fang J, Leufke P M, Kruk R, Wang D, Scherer T, Hahn H. Nano Today, 2010, 5: 175.
[61] Xu M, Wang F, Ding B, Song X, Fang J. RSC Advances, 2012, 2: 2240.
[62] Li T, Cao Z, You H, Xu M, Song X, Fang J. Chem. Phys. Lett., 2013, 555: 154.
[63] Yao R, Cao C, Bai J. CrystEngComm, 2013, 15: 3279.
[64] Ma Y, Cölfen H, Antonietti M. J. Phys. Chem. B, 2006, 110: 10822.
[65] Wohlrab S, Pinna N, Antonietti M, Cölfen H. Chem. Eur. J., 2005, 11: 2903.
[66] Jiang Y, Gong H, Volkmer D, Gower L, Cölfen H. Adv. Mater., 2011, 23: 3548.
[67] Jiang Y, Gong H, Grzywa M, Volkmer D, Gower L, Cölfen H. Adv. Funct. Mater., 2013, 23: 1547.
[68] Su Y, Yan X, Wang A, Fei J, Cui Y, He Q, Li J. J. Mater. Chem., 2010, 20: 6734.
[69] Gong Q, Qian X, Ma X, Zhu Z. Crystal Growth & Design, 2006, 6: 1821.
[70] Sun J, Chen G, Pei J, Jin R, Wang Q, Guang X. J. Mater. Chem., 2012, 22: 5609.
[71] Quan Z, Fang J. Nano Today, 2010, 5: 390.
[72] Fang X L, Chen C, Jin M S, Kuang Q, Xie Z X, Xie S Y, Huang R B, Zheng L S. J. Mater. Chem., 2009, 19: 6154.
[73] Tartaj P. Chem. Commun., 2011, 47: 256.
[74] Bian Z, Tachikawa T, Majima T. J. Phys. Chem. Lett., 2012, 3: 1422.
[75] Hu X, Gong J, Zhang L, Yu J C. Adv. Mater., 2008, 20: 4845.
[76] Teng X, Maksimuk S, Frommer S, Yang H. Chem. Mater., 2006, 19: 36.
[77] Nogami M, Koike R, Jalem R, Kawamura G, Yang Y, Sasaki Y. J. Phys. Chem. Lett., 2010, 1: 568.
[78] Bian Z, Tachikawa T, Kim W, Choi W, Majima T. J. Phys. Chem. C, 2012, 116: 25444.
[79] Zhu G, Liu Y, Ji Z, Bai S, Shen X, Xu Z. Mater. Chem. Phys., 2012, 132: 1065.
[80] Zhang L, Cao X F, Chen X T, Xue Z L. J. Colloid Interface Sci., 2011, 354: 630.
[81] Wang D, Li J, Cao X, Pang G, Feng S. Chem. Commun., 2010, 46: 7718.
[82] Tartaj P, Amarilla J M. Adv. Mater., 2011, 23: 4904.
[83] Hong Z, Wei M, Lan T, Cao G. Nano Energy, 2012, 1: 466.
[84] Hong Z, Wei M, Lan T, Jiang L, Cao G. Energy Environ. Sci., 2012, 5: 5408.
[85] Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M. J. Mater. Chem., 2009, 19: 5125.
[86] Huang M, Schilde U, Kumke M, Antonietti M, Cölfen H. J. Am. Chem. Soc., 2010, 132: 3700.
[87] Tseng Y H, Lin H Y, Liu M H, Chen Y F, Mou C Y. J. Phys. Chem. C, 2009, 113: 18053.
[88] Wu X L, Xiong S J, Liu Z, Chen J, Shen J C, Li T H, Wu P H, Chu P K. Nat. Nano., 2011, 6: 103.
[89] Hu B, Wu L H, Zhao Z, Zhang M, Chen S F, Liu S J, Shi H Y, Ding Z J, Yu S H. Nano Res., 2010, 3: 395.
[90] Kijima M, Oaki Y, Imai H. Chem. Eur. J., 2011, 17: 2828.
[91] Ge J, Hu Y, Biasini M, Beyermann W P, Yin Y. Angew. Chem. Int. Ed., 2007, 46: 4342.
[92] Huang X, Tang S, Yang J, Tan Y. Zheng N. J. Am. Chem. Soc., 2011, 133: 15946.
[93] Su Y, He Q, Yan X, Fei J, Cui Y, Li J. Chem. Eur. J., 2011, 17: 3370.
[94] Oaki Y, Kijima M, Imai H. J. Am. Chem. Soc., 2011, 133: 8594.
[95] Espinosa H D, Juster A L, Latourte F J, Loh O Y, Gregoire D, Zavattieri P D. Nat. Commun., 2011, 2: 173.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.