中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 277-292 DOI: 10.7536/PC130646 Previous Articles   Next Articles

• Review •

Synthesis and Applications in Catalysis of Porphyrinic Metal-Organic Frameworks

Zhuang Changfu1,2,4, Liu Jianlu2, Dai Wen1,3, Wu Zhongping2, Wang Ying4, Gao Shuang*1   

  1. 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. Shandong Haihua Group Corporation Ltd., Weifang 262737, China;
    3. University of the Chinese Academy of Sciences, Beijing 100039, China;
    4. Faculty of Materials Engineering, Southwest Forestry University, Kunming 650224, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the State Key Development Program for Basic Research of China (No.2009CB623505), the National Natural Science Foundation of China (No.21273225), and the China Postdoctoral Science Foundation (No.2013M541257)

PDF ( 4389 ) Cited
Export

EndNote

Ris

BibTeX

Heterogeneous catalysis is one of the promising applications for metal-organic frameworks (MOFs) materials because of their high porosity, large surface areas and their flexible tailoring. An attractive approach to design MOFs-based catalysts is to heterogenize them by employing known homogeneous molecular catalysts as struts. In view of the enormous utility as active sites in metallo-enzymes, metalloporphyrin is obvious candidates for incorporation into MOFs as catalytically functional struts. Many efficient strategies have been established for the rational design and synthesis of catalytically functional porphyrinic MOFs. This review is aimed to summarize recent progress on porphyrinic MOFs, including new synthesis strategies and applications in catalysis. The development trends of porphyrinic MOFs are also prospected.

Contents
1 Introduction
2 Synthesis strategies for porphyrinic MOFs
2.1 Utility of extendable porphyrinic ligands in generating secondary building units (SBUs)
2.2 Using specially designed spacers to stabilize secondary building units (SBUs)
2.3 Combination of mixed-ligands
2.4 Template-directed synthesis
3 Heterogeneous catalytic performances of porphyrinic MOFs
3.1 MOFs-based catalysts constructed by porphyrinic ligands
3.2 Catalytic reactions of MOFs-encapsulated porphyrinic catalysts
4 Conclusions and outlook

CLC Number: 

[1] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116: 1151.
[2] Zhang J P, Zhang Y B, Lin J B, Chen X M. Chem. Rev., 2012, 112: 1001.
[3] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[4] Corma A, García H, Llabrés F X, Xamena I. Chem. Rev., 2010, 110: 4606.
[5] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38: 1248.
[6] Czaja A U, Trukhanb N, Mullerb U. Chem. Soc. Rev., 2009, 38: 1284.
[7] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[8] 刘兵(Liu B), 介素云(Jie S Y), 李伯耿(Li B G). 化学进展(Progress in Chemistry), 2013, 25 (1): 36.
[9] Nuzhdin A L, Dybtsev D N, Bryliakov K P, Talsi E P, Fedin V P. J. Am. Chem. Soc., 2007, 129: 12958.
[10] Abrahams B F, Hoskins B F, Michail D M, Robson R. Nature, 1994, 369: 727.
[11] 刘丽丽(Liu L L), 张鑫(Zhang X), 徐春明(Xu C M). 化学进展(Progress in Chemistry), 2010, 11 (22): 2089.
[12] Kitagawa S, Noro S I, Nakamura T. Chem. Commun., 2006, 701.
[13] Lu H J, Zhang X P. Chem. Soc. Rev., 2011, 40: 1899.
[14] 李沛陪(Li P P), 童金辉(Tong J H), 李臻(Li Z), 夏春谷(Xia C G), 陈静(Chen J). 分子催化(Journal of Molecular Catalysis), 2010, 24(2): 158.
[15] 周贤太(Zhou X T), 纪红兵(Ji H B), 裴丽霞(Pei L X), 佘远斌(She Y B), 徐建昌(Xu J C), 王乐夫(Wang L F). 有机化学(Chinese Journal of Organic Chemistry), 2007, 27: 1039.
[16] Moghadam M, Tangs T S, Mirkhani V. Bioorganic Medicinal Chemistry, 2009, 17: 3394.
[17] Rose E, Andrioletti B, Zrig S, Melanie Q E. Chem. Soc. Rev., 2005, 34: 573.
[18] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38: 283.
[19] Goldberg I. Chem. Commun., 2005, 1243.
[20] Shirley N, Gabriel K B F, Geani M U, Kelly A D F C. Molecules, 2013, 18: 7279.
[21] Burnett B J, Barron P M, Hu C, Choe W. CrystEngComm, 2012, 14: 3839.
[22] Zou C, Wu C D. Dalton. Trans., 2012, 41: 3879.
[23] Tranchemontagne D J, Mendoza-Cortes J, O'Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1257.
[24] O'Keeffe M. Chem. Soc. Rev., 2009, 38: 1215.
[25] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148.
[26] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295: 469.
[27] Chae H K, Siberio-Pérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427: 523.
[28] Johnson J A, Lin Q, Wu L C, Obaidi N, Zachary L O, Reeson T C, Chenb Y S, Zhang J. Chem. Commun., 2013, 49: 2828.
[29] Karmakar A, Goldberg I. CrystEngComm, 2010, 12: 4095.
[30] Matsunaga S, Endo N, Mori W. Eur. J. Inorg. Chem., 2011, 4550.
[31] 方千荣(Fang Q R). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2007.
[32] Ferey G, Mellot D C, Serre C, Millange F, Dutour J, Surble S, Margiolaki l. Science, 2005, 309: 2040.
[33] Choi E Y, Wray C A, Hu C, Choe W. Cryst. Eng. Comm., 2009, 11: 553.
[34] Ruiz-olina M D, Gerbier P, Rumberger E, Amabilino D B, Guzei I A, Folting K, Huffman J C, Rheingold A, Christou G, Veciana J, Hendrickson D N. J. Mater. Chem., 2002, 12: 1152.
[35] Milios C J, Kefalloniti E, Raptopoulou C P, Terzis A, Vicente R, Lalioti N, Escuer A, Perlepes S P. Chem. Commun., 2003, 819.
[36] Edger M, Mitchell R, Slawin A M, Lightfoot P, Wright P A. Chem. Eur. J., 2001, 7: 5168.
[37] Ma C B, Chen C N, Liu Q T, Liao D H, Li L, Sun L C. New J. Chem., 2003, 27: 890.
[38] Kim J, Chen B L, Reineke T M, Li H, Eddaoudi M, Moler D B, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2001, 123: 8239.
[39] Yaghi O M, Davis C E, Li G, Li H. J. Am. Chem. Soc., 1997, 119: 2861.
[40] Lu J, Mondal A, Moulton B, Zaworotko M J. Angew. Chem. Int. Ed., 2001, 40: 2113.
[41] 孙锦玉(Sun J Y). 复旦大学博士论文 (Doctoral Dissertation of Fudan University), 2003.
[42] Rujiwatra A, Kepert C J, Rosseinsky M J. Chem Commun., 2001, 495.
[43] Choi E Y, Barron P M, Novotny R W, Son H T, Hu C, Choe W. Inorg. Chem., 2009, 48: 426.
[44] Barron P M, Wray C A, Hu C, Guo Z, Choe W. Inorg. Chem., 2010, 49: 10217.
[45] Burnett B J, Barron P M, Hu C, Choe W. J. Am. Chem. Soc., 2011, 133: 9984.
[46] Chung H, Barron P M, Novotny R W, Son H T, Hu C, Choe W. Cryst. Growth Des., 2009, 9: 3327.
[47] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204.
[48] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T, Hupp J T. J. Am. Chem. Soc., 2011, 133: 5652.
[49] Zou C, Zhang Z J, Xu X, Gong Q H, Li J, Wu C D. J. Am. Chem. Soc., 2012, 134: 87.
[50] Zhang Z J, Zhang L P, Wojtas L K, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 928.
[51] Hagrman D, Hagrman P J, Zubieta J. Angew. Chem. Int. Ed., 1999, 38: 3165.
[52] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38: 283.
[53] Takaishi S, DeMarco E J, Pellin M J, Farha O K, Hupp J T. Chem. Sci., 2013, 4: 1509.
[54] Wang X S, Chrzanowski M, Kim C, Gao W Y, Wojtas L, Chen Y S, Zhang P X, Ma S Q. Chem. Commun. , 2012, 48: 7173.
[55] Meng L, Cheng Q, Kim C, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Zhang X P, Ma S Q. Angew. Chem. Int. Ed., 2012, 51: 10082.
[56] Wang X S, Chrzanowski M, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Ma S Q. Chem. Sci. , 2012, 3: 2823.
[57] Wang X S, Chrzanowski M, Wojtas L, Chen Y S, Ma S Q. Chem. Eur. J., 2013, 19: 3297.
[58] Chen Y, Hoang T, Ma S Q. Inorg. Chem., 2012, 51: 12600.
[59] Yang X L, Xie M H, Zou C, He Y B, Chen B L, O'Keeffe M, Wu C D. J. Am. Chem. Soc., 2012, 134: 10638.
[60] Alkordi M H, Liu Y L, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130: 12639.
[61] Zhang Z J, Zhang L P, Wojtas L K, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 924.
[62] Xie M H, Yang X L, Wu C D. Chem. Commun., 2011, 47: 5521.
[63] Jin S G, Son H J, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135 (3): 955.
[64] Son H J, Jin S G, Farha O K, Patwardhan S, Wezenberg S J, Jeong N C, So M, Wilmer C E, Sarjeant A A, Schatz G C, Snurr R Q, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135 (2): 862.
[65] Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. Angew. Chem. Int. Ed., 2012, 51: 7440.
[66] Xie M H, Yang X L, Zou C, Wu C D. Inorg. Chem., 2011, 50: 5318.
[67] Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed., 2012, 51: 10307.
[68] Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. Chem. Rev., 2010, 110: 949.
[69] 史静(Shi J), 任楠(Ren N), 张亚红(Zhang Y H), 唐颐(Tang Y). 化学进展(Progress in Chemistry), 2009, 215 (9): 1750.
[70] Larsen R W, Wojtas L, Perman J, Musselman R L, Zaworotko M J, Vetromile C M. J. Am. Chem. Soc., 2011, 133: 10356.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[9] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[10] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.