中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 214-222 DOI: 10.7536/PC130633 Previous Articles   

• Review •

Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating

Yan Yingdi1, Luo Nengzhen2, Xiang Xiangao2, Xu Yiming2, Zhang Qinghua*1, Zhan Xiaoli1   

  1. 1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. China Construction Industrial Equipment Installation Co., Ltd., Nanjing 210046, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21076184, 21176212, 21276224)

PDF ( 1852 ) Cited
Export

EndNote

Ris

BibTeX

Ice adhesion and accretion on the facilities of aviation, telecommunication, electricity and transportation can lead to major inconvenience for our daily life and can even cause great economic losses. Therefore, it is worthwhile to study anti-icing and icephobic technology. Among all of them, concerning mechanical removing, electrothermal methods, spraying chemicals and coatings, anti-icing & icephobic coating is the research hotspot due to its obvious advantages such as low energy consumption, environmentally friendly and so on. It focuses on mitigating or even eliminating ice accumulation by extending freezing time and reducing ice adhesion strength. Extending freezing time is conducive to condensed water rolling off the substrates before it freezes via outside power, such as gravity, wind power and centrifugal force. Reducing ice adhesion strength makes de-icing procedure facile even if the condensed water has frozen on the substrates. It has been proved that by optimizing surface physicochemical properties and surface topography, both ideal effects can be achieved. On the basis of analyzing the mechanism, the influencing factors of anti-icing and icephobic properties are comprehensively discussed. Taking relative factors into consideration, a balance need to be reached between contradictory ones. Furthermore, the research progress of designing and fabricating anti-icing & icephobic coating is reviewed, including hydrophilic coating, hydrophobic coating and multi-functional composite coating. Finally, the prospective tendency of anti-icing & icephobic coating is proposed based on the current challenges.

Contents
1 Introduction
2 Mechanism for anti-icing & icephobic coating
2.1 Anti-icing
2.2 Icephobic
3 Progress in anti-icing & icephobic coating
3.1 Hydrophilic coating
3.2 Hydrophobic coating
3.3 Multi-functional composite coating
4 Prospective tendencies of anti-icing & icephobic coating
5 Conclusion

CLC Number: 

[1] Dalili N, Edrisy A, Carriveau R. Renew. Sust. Energ. Rev., 2009, 13(2): 428.
[2] Farzaneh M, Ryerson C C. Cold. Reg. Sci. Technol., 2011, 65(1SI): 1.
[3] Raraty L E, Tabor D. Proc. R. Soc. London, Ser. A-Mathematical and physical sciences, 1958, 245(1241): 184.
[4] Onda T, Shibuichi S, Satoh N. Langmuir, 1996, 12(9): 2125.
[5] Young T. Philos. Trans. R. Soc. London, 1805, 95: 65.
[6] Li Y, Huang X J, Heo S H. Langmuir, 2007, 23(4): 2169.
[7] Zhan X L, Luo Z H, Zhang Q H, Chen F Q. Chin. Chem. Lett., 2009, 20(6): 729.
[8] 王琼燕(Wang Q Y), 张庆华(Zhang Q H), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2009(10): 2183.
[9] Zhang Q H, Luo Z H, Zhan X L, Chen F Q. Chin. Chem. Lett., 2009, 20(4): 478.
[10] Wang Q Y, Zhang Q H, Zhan X L, Chen F Q. J. Polym. Sci., Part A: Polym. Chem., 2010, 48(12): 2584.
[11] 钱涛(Qiao T), 汪涓涓(Wang J J), 张庆华(Zhang Q H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, (03): 703.
[12] Jindasuwan S, Nimittrakoolchai O, Sujaridworakun P. Thin Solid Films, 2009, 517(17): 5001.
[13] Wenzel R N. Ind. Eng. Chem. Res., 1936, 28: 988.
[14] Cassie A, Baxter S. Transations of the Faraday Society, 1944, 40: 546.
[15] Wu X, Wang W. J. Eng. Thermophys, 2003, 24(2): 286.
[16] Tourkine P, Le Merrer M, Quere D. Langmuir, 2009, 25(13): 7214.
[17] Guo P, Zheng Y M, Wen M X. Adv. Mater., 2012, 24(19): 2642.
[18] He M, Wang J J, Li H L. Soft Matter, 2011, 7(8): 3993.
[19] Boinovich L B, Emelyanenko A M. Mendeleev Commun., 2013, 23(1): 3.
[20] Jung S, Dorrestijn M, Raps D. Langmuir, 2011, 27(6): 3059.
[21] Carter J T. US8221847B2, 2012.
[22] Yang T, Yang Z J, Singla M. J. Cold. Reg. Eng., 2012, 26(2): 55.
[23] Olsen K, Larsen F M, Grabau P. US6612810B1, 2003.
[24] 荆忠(Jing Z). CN102260444A, 2011.
[25] 袁晓燕(Yuan X Y), 朱孔营(Zhu K Y), 周建伟(Zhou J W). CN102268222A, 2011.
[26] Meuler A J, Smith J D, Varanasi K K. ACS Appl. Mat. Interfaces, 2010, 2(11): 3100.
[27] Petrenko V F, Whitworth R W. Physics of Ice. Oxford: Oxford University Press, 1999.
[28] The Role of Deicing and Anti-icing in the Air Force. Air Force Aircraft and Airfield Deicing/Anti-icing. http://infohouse. p2ric. org/ref/01/00593. pdf. (1998-05)[2013-05].
[29] Dotan A, Dodiuk H, Laforte C. J. Adhes. Sci. Technol., 2009, 23(15): 1907.
[30] Menini R, Farzaneh M. J. Adhes. Sci. Technol., 2011, 25(9): 971.
[31] Kulinich S A, Farzaneh M. Langmuir, 2009, 25(16): 8854.
[32] Furmidge C G. J. Colloid Interface Sci., 1962, 17(4): 309.
[33] Gao L C, Mccarthy T J. Langmuir, 2008, 24(17): 9183.
[34] Gao L C, Mccarthy T J. Langmuir, 2009, 25(24): 14105.
[35] Sarshar M A, Swarctz C, Hunter S. Colloid. Polym. Sci., 2013, 291(2): 427.
[36] Autumn K, Sitti M, Liang Y A. Proc. Natil Acad. Sci. U. S. A., 2002, 99(19): 12252.
[37] Matsumoto K, Daikoku Y. Int. Jrefrig., 2009, 32(3): 444.
[38] Petrenko V F, Qi S G. J. Appl. Phys., 1999, 86(10): 5450.
[39] Peng S L, Petrenko V F, Arakawa M. Effect of self-assembling monolayers (SAMs) on ice adhesion to metals. Warrendale: Materials Research Society, 2000: 586, 261.
[40] Petrenko V F, Peng S. Can. J. Phys., 2003, 81(1/2): 387.
[41] Petrenko V F. J. Appl. Phys., 1994, 76(2): 1216.
[42] Ryzhkin I A, Petrenko V F. J. Phys. Chem. B, 1997, 101(32): 6267.
[43] Petrenko V F. J. Phys. Chem. B, 1997, 101(32): 6276.
[44] Ryzhkin I A, Petrenko V F. J Exp Theor Phys., 2005, 101(2): 317.
[45] Sarkar D K, Farzaneh M. J. Adhes. Sci. Technol., 2009, 23(9): 1215.
[46] Huang Y F, Hu M J, Yi S P. Thin Solid Flims, 2012, 520(17): 5644.
[47] Antonini C, Innocenti M, Horn T. J. Adhes. Sci. Technol., 2011, 67(1/2): 58.
[48] Karmouch R, Ross G G. J. Phys. Chem. C. 2010, 114(9): 4063.
[49] Varanasi K K, Hsu M, Bhate N. Appl. Phys. Lett., 2009, 95: 0941019.
[50] Kulinich S A, Farhadi S, Nose K. Langmuir, 2011, 27(1): 25.
[51] Jellinek H, Kachi H, Kittaka S. Colloid. Polym. Sci., 1978, 256(6): 544.
[52] Matsumoto K, Kobayashi T. Int. J. Refrig., 2007, 30(5): 851.
[53] Kako T, Nakajima A, Irie H. J. Mater. Sci., 2004, 39(2): 547.
[54] Nakajima A. J. Ceram. Soc. Jpn., 2004, 112(1310): 533.
[55] Meyers A, Leicht R, Wiesenfeld A. US5935488A, 1999.
[56] Attar. A. J. US2009294724-A1, 2009.
[57] 李辉(Li H), 赵蕴慧(Zhao Y H), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry). 2012, 24: 2087.
[58] Yuan Z Q, Bin J P, Wang X. Polym. Eng. Sci., 2012, 52(11): 2310.
[59] Menini R, Ghalmi Z, Farzaneh M. Cold Reg. Sci. Technol., 2011, 65(1SI): 65.
[60] Saleema N, Farzaneh M, Paynter R W. J. Adhes. Sci. Technol., 2011, 25(1/3): 27.
[61] Momen G, Farzaneh M. Superhydrophobic RTV silicone rubber coatings on anodized aluminium surfaces. Stafa-Zurich: Trans. Tech. Publications LTD, 2012: 706/709, 2546.
[62] Momen G, Farzaneh M, Jafari R. Appl. Surf. Sci., 2011, 257(15): 6489.
[63] Lee H J. J. Mater. Sci., 2012, 47(13): 5114.
[64] Murase H, Nanishi K, Kogure H. J. Appl. Polym. Sci., 1994, 54(13): 2051.
[65] Murase H, Fujibayashi T. Prog. Org. Coat., 1997, 31(1/2): 97.
[66] Croutch V K, Hartley R A. J. Coat. Technol., 1992, 64(815): 41.
[67] Laforte C, Laforte L J, Carriere C J. How a Solid Coating Can Reduce the Adhesion of Ice on a Structure. Brno, Czech Republic: International Workshop on Atmospheric Icing on Structures, 2002, 9: 1.
[68] Liu Z L, Gou Y J, Wang J T, Cheng Sh Y. Int. J. Heat Mass Transfer, 2008, 51(25/26): 5975.
[69] Menini R, Farzaneh M. Polym. Int., 2008, 57(1): 77.
[70] Safaee A, Sarkar D K, Farzaneh M. Appl. Surf. Sci., 2008, 254(8): 2493.
[71] Saleema N, Farzaneh M. Appl. Surf. Sci., 2008, 254(9): 2690.
[72] Sarkar D K, Farzaneh M, Paynter R W. Mater. Lett., 2008, 62(8/9): 1226.
[73] Arianpour F, Farzaneh M, Kulinich S A. Appl. Surf. Sci., 2013, 265: 546.
[74] Feng L, Zhang Y A, Xi J M. Langmuir, 2008, 24(8): 4114.
[75] Liu X J, Liang Y M, Zhou F, Liu W M, Soft Matter, 2012, 8(7): 2070.
[76] Kulinich S A, Farzaneh M. Cold Reg. Sci. Technol., 2011, 65(1SI): 60.
[77] Cheng Y T, Rodak D E. Appl. Phys. Lett., 2005, 86: 14410114.
[78] Wilson P W, Lu W, Xu H. Phys. Chem. Chem. Phys., 2013, 15(2): 581.
[79] Kim P, Wong T, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012. 6(8): 6569.
[80] He M, Zhang Q L, Zeng X P, Cui D P, Chen J, Li H L, Wang J J, Song Y L. Adv. Mater., 2013, 25(16): 2291.
[81] He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L. Jiang L. Soft Matter, 2012, 8: 6680.
[82] Zheng Y M, Han D, Zhai J. Appl. Phys. Lett., 2008, 92: 0841068.
[83] 曲爱兰(Qu A L), 文秀芳(Wen X F), 皮丕辉(Pi P H). 化学进展(Progress in Chemistry), 2006, 18(11): 1434.
[84] 赵宁(Zhao N), 卢晓英(Lu X Y), 张晓艳(Zhang X Y). 化学进展(Progress in Chemistry), 2007, 19(6): 860.
[85] Momen G, Farzaneh M. Micro & Nano Lett., 2011, 6(6): 405.
[86] Li H, Zhao Y H, Yuan X Y. Soft Matter, 2013, 9(4): 1005.
[87] Charpentier T, Neville A, Millner P. J. Colloid Interface Sci., 2013, 394: 539.
[88] 张毅(Zhang Y), 葛宋(Ge S), 张相雄(Zhang X X). 2012年中国工程热物理学会传热传质学学术年会(The Science Symposium on Heat and Mass Transfer, Chinese Society of Engineering Thermophysics). (东莞), 2012.
[89] Xiao J, Chaudhuri S. Langmuir, 2012, 28(9): 4434.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[3] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[4] Jing Wang, Haodi Yu, Junkun Wang, Ling Yuan, Lin Ren, Qingyu Gao. Helical Motion of Active Artificial Swimmers [J]. Progress in Chemistry, 2023, 35(2): 206-218.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[10] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[11] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[12] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[13] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[14] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[15] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.