中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 167-177 DOI: 10.7536/PC130616 Previous Articles   Next Articles

• Review •

Fabrication Techniques of Microfluidic Paper-Based Chips and Their Applications

Jiang Yan, Ma Cuicui, Hu Xianqiao, He Qiaohong*   

  1. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20890020) and the National Key Technology R&D Program of China (No. 2012BAI13B06)

PDF ( 4107 ) Cited
Export

EndNote

Ris

BibTeX

Microfluidic paper-based chip analysis is a burgeoning microfluidic technique. It possesses great potentials for application in clinical diagnosis, food quality control as well as environmental monitoring due to its attractive features such as low-cost, easy-to-fabricate, easy-to-use and portable.Its importance and utility are widely acknowledged and extensive research has been conducted in the past several years. This paper mainly aims to review the developed techniques for fabrication of microfluidic paper-based chips, including UV photolithography, wax printing, plasma treatment, ink printing, ink jet etching, plotting, screen printing, flexography printing and laser treatment, and so on. The detection methods for the microfluidic paper-based chip analysis and applications of microfluidic paper-based chips are also reviewed.

Contents
1 Introduction
2 Paper choices
3 Fabrication techniques of microfluidic paper-based chips
3.1 UV photolithography technique
3.2 Wax printing technique
3.3 Plasma treatment technique
3.4 Ink printing technique
3.5 Ink jet etching technique
3.6 Plotting technique
3.7 Screen printing and flexography printing technique
3.8 Wax dipping technique
3.9 Laser treatment technique
3.10 Other techniques
4 Detection methods in microfluidic paper-based analytical devices
4.1 Colorimetric detection
4.2 Electrochemical detection
4.3 Chemiluminescence and electrochemilumine-scence detection
5 Applications of microfluidic paper-based analytical devices
5.1 Clinical diagnosis
5.2 Food quality control
5.3 Environmental monitoring
6 Conclusion and perspective

CLC Number: 

[1] Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Ed., 2007, 46: 1318.
[2] Haller P D, Flowers C A, Gupta M. Soft Matter, 2011, 7: 2428.
[3] He Q H, Ma C C, Hu X Q, Chen H W. Anal. Chem., 2013, 85: 1327.
[4] Lu Y, Shi W W, Qin J H, Lin B C. Anal. Chem., 2010, 82: 329.
[5] Lu Y, Shi W W, Jiang L, Qin J H, Lin B C. Electrophoresis, 2009, 30: 1497.
[6] Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81: 7091.
[7] Li X, Tian J F, Garnier G, Shen W. Colloid Surf. B: Biointerfaces, 2010, 76: 564.
[8] Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80: 3387.
[9] Nie J F, Zhang Y, Lin L W, Zhou C B, Li S H, Zhang L M, Li J P. Anal. Chem., 2012, 84: 6331.
[10] Liu H, Crooks R M. J. Am. Chem. Soc., 2011, 133: 17564.
[11] Martinez A W, Phillips S T, Whitesides G M. PNAS, 2008, 105: 19606.
[12] Cheng C M, Martinez A W, Gong J L, Mace C R, Phillips S T, Carrilho E, Mirica K A, Whitesides G M. Angew. Chem. Int. Ed., 2010, 49: 4771.
[13] Cretich M, Sedini V, Damin F, Pelliccia M, Sola L, Chiari M. Anal. Biochem., 2010, 397: 84.
[14] Li X, Ballerini D R, Shen W. Biomicrofluidics, 2012, 6: 011301.
[15] Liana D D, Raguse B, Gooding J J, Chow E. Sensors, 2012, 12: 11505.
[16] Ballerini D R, Li X, Shen W. Microfluid. Nanofluid., 2012, 13: 769.
[17] Yang X X, Forouzan O, Brown T P, Shevkoplyas S S. Lab Chip, 2012, 12: 274.
[18] Al-Tamimi M, Shen W, Zeineddine R, Tran H, Garnier G. Anal. Chem., 2012, 84: 1661.
[19] Klasner S A, Price A K, Hoeman K W, Wilson R S, Bell K J, Culbertson C T. Anal. Bioanal. Chem., 2010, 397: 1821.
[20] Martinez A W, Phillips S T, Nie Z H, Cheng C M, Carrilho E, Wiley B J, Whitesides G M. Lab Chip, 2010, 10: 2499.
[21] Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81: 5990.
[22] Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80: 3699.
[23] Martinez A W, Phillips S T, Wiley B J, Gupta M, Whitesides G M. Lab Chip, 2008, 8: 2146.
[24] Rezk A R, Qi A S, Friend J R, Li W H, Yeo L Y. Lab Chip, 2012, 12: 773.
[25] Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry C S, Chailapakul O. Anal. Chem., 2010, 82: 1727.
[26] Dungchai W, Chailapakul O, Henry C S. Anal. Chem., 2009, 81: 5821.
[27] Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35: 363.
[28] Pardasani D, Tak V, Purohit A K, Dubey D K. Analyst, 2012, 137: 5648.
[29] Carvalhal R F, Kfouri M S, Piazetta M H D, Gobbi A L, Kubota L T. Anal. Chem., 2010, 82: 1162.
[30] Martinez A W, Phillips S T, Carrilho E, Whitesides G M. Anal. Chem., 2010, 82: 3.
[31] Zhang M, Ge L, Ge S G, Yan M, Yu J H, Huang J D, Liu S. Biosens. Bioelectron., 2013, 41: 544.
[32] Ge L, Yan J X, Song X R, Yan M, Ge S G, Yu J H. Biomaterials, 2012, 33: 1024.
[33] Jokerst J C, Adkins J A, Bisha B, Mentele M M, Goodridge L D, Henry C S. Anal. Chem., 2012, 84: 2900.
[34] Hossain S M Z, Brennan J D. Anal. Chem., 2011, 83: 8772.
[35] Vella S J, Beattie P, Cademartiri R, Laromaine A, Martinez A W, Phillips S T, Mirica K A, Whitesides G M. Anal. Chem., 2012, 84: 2883.
[36] Yan J X, Ge L, Song X R, Yan M, Ge S G, Yu J H. Chem. Eur. J., 2012, 18: 4938.
[37] Zang D J, Ge L, Yan M, Song X R, Yu J H. Chem. Commun., 2012, 48: 4683.
[38] Li W P, Ge S G, Wang S M, Yan M, Ge L, Yu J H. Luminescence, 2013, 28: 496.
[39] Wang P P, Ge L, Yan M, Song X R, Ge S G, Yu J H. Biosens. Bioelectron, 2012, 32: 238.
[40] Mentele M M, Cunningham J, Koehler K, Volckens J, Henry C S. Anal. Chem., 2012, 84: 4474.
[41] Ge S G, Ge L, Yan M, Song X R, Yu J H, Huang J D. Chem. Commun., 2012, 48: 9397.
[42] Zhong Z W, Wang Z P, Huang G X D. Microsyst. Technol., 2012, 18: 649.
[43] Shiroma L Y, Santhiago M, Gobbi A L, Kubota L T. Anal. Chim. Acta, 2012, 725: 44.
[44] Wang S W, Ge L, Zhang Y, Song X R, Li N Q, Ge S G, Yu J H. Lab Chip, 2012, 12: 4489.
[45] Lu J J, Ge S G, Ge L, Yan M, Yu J H. Electrochim. Acta, 2012, 80: 334.
[46] Pollock N R, Rolland J P, Kumar S, Beattie P D, Jain S, Noubary F, Wong V L, Pohlmann R A, Ryan U S, Whitesides G M. Sci. Transl. Med., 2012, 4: 1.
[47] Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12: 3150.
[48] Nie Z H, Deiss F, Liu X Y, Akbulut O, Whitesides G M. Lab Chip, 2010, 10: 3163.
[49] Li X, Tian J F, Shen W. Cellulose, 2010, 17: 649.
[50] Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80: 9131.
[51] Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83: 1300.
[52] Abe K, Koter K, Suzuki K, Citterio D. Anal. Bioanal. Chem, 2010, 398: 885.
[53] Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80: 6928.
[54] Dungchai W, Chailapakul O, Henry C S. Analyst, 2011, 136: 77.
[55] Olkkonen J, Lehtinen K, Erho T. Anal. Chem., 2010, 82: 10246.
[56] Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J. Sens. Actuators B: Chem., 2011, 160: 1404.
[57] Chitnis G, Ding Z W, Chang C L, Savran C A, Ziaie B. Lab Chip, 2011, 11: 1161.
[58] Songjaroena T, Dungchai W, Chailapakul O, Laiwattanapaisal W. Talanta, 2011, 85: 2587.
[59] Songjaroen T, Dungchai W, Chailapakul O, Henry C S, Laiwattanapaisal W. Lab Chip, 2012, 12: 3392.
[60] Sugimura H, Ushiyama K, Hozumi A, Takai O. Langmuir, 2000, 16: 885.
[61] Bai Z Q, He Q H, Huang S S, Hu X Q, Chen H W. Anal. Chim. Acta, 2013, 767: 97.
[62] Zhang A L, Zha Y. AIP Advances, 2012, 2: 022171.
[63] 白鹏(Bai P), 罗雁(Luo Y), 李英(Li Y), 余晓东(Yu X D), 陈洪渊(Chen H Y). 分析化学 (Chinese J. Anal. Chem. ), 2013, 43: 20.
[64] Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G. Sens. Actuators B: Chem., 2010, 145: 488.
[65] Nie Z H, Nijhuis C A, Gong J H, Chen X, Kumachev A, Martinez A W, Narovlyansky M, Whitesides G M. Lab Chip, 2010, 10: 477.
[66] Lei K F, Lee K F, Yang S I. Microelectron. Eng., 2012, 100: 1.
[67] Wang L B, Chen W, Xu D H, Shim B S, Zhu Y Y, Sun F X, Liu L Q, Peng C F, Jin Z Y, Xu C L, Kotov N A. Nano Lett., 2009, 9: 4147.
[68] Yu J H, Ge L, Huang J D, Wang S M, Ge S G. Lab Chip, 2011, 11: 1286.
[69] Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J, Zeng F. Biosens. Bioelectron., 2012, 31: 212.
[70] 王方方(Wang F F), 陈锦(Chen J), 何治柯(He Z K). 分析科学学报(J. Anal. Sci. ), 2011, 27: 137.
[71] Ornatska M, Sharpe E, Andreescu D, Andreescu S. Anal. Chem., 2011, 83: 4273.
[72] Wang W, Wu W Y, Wang W, Zhu J J. J. Chromatogr. A, 2010, 1217: 3896.
[73] Li C Z, Vandenberg K, Prabhulkar S, Zhu X N, Schneper L, Methee K, Rosser C J, Almeide E. Biosens. Bioelectron., 2011, 26: 4342.
[74] Hossain S M Z, Luckham R E, McFadden M J, Brennan J D. Anal. Chem., 2009, 81: 9055.

[1] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[2] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[5] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[6] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[7] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[10] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[11] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[12] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[13] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[14] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[15] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.