中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 152-157 DOI: 10.7536/PC130548 Previous Articles   Next Articles

• Review •

Application of Thiol-Ene “Click” Reactions in the Preparation of Monolithic Columns

Xiong Xiyue1, Peng Zeqiang2, Shu Yan1, He Haiqin1, Chen Yingzhuang*1, Chen Bo1   

  1. 1. Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China;
    2. Lu Nan Environmental Protection Engineering Co., Ltd., Changsha 410081, China
  • Received: Revised: Online: Published:
PDF ( 843 ) Cited
Export

EndNote

Ris

BibTeX

Due to the easier preparation, better permeability and higher column efficiency over traditional packed columns, monolithic columns have gained increasing interest as separation media in all chromatographic methods. In recent years, with the rapid development of nanoscale chromatographic separation systems, the use of capillary monolithic columns have emerged as a promising choice. According to the chemical composition of monoliths, monolithic columns can be mainly classified into organic polymer-based, silica-based and organic-silica hybrid monolithic columns. Each of monoliths is tended to be prepared with versatile functionality. However, silica-based monoliths aways suffer from limited silylating reagents and complex processes of modifications, and conventional approaches of preparing polymer-based monoliths and organic-silica hybrid monoliths also prevent their development due to the special requirements of functional monomers (possess vinyl or acrylate groups). Recently, thiol-ene "click" reaction has already received extensive attention in the field of monolith preparation owing to its exceptional versatility and propensity for the quantitative conversions under mild conditions, extending the choice of categories of functional monomers to some extent. Herein, the fabrication approaches are comprehensively summarized with two routes: (1) surface modification of monoliths via thiol-ene "click" reaction, (2) "one-pot" synthesis of monolithic columns via thiol-ene "click" reaction.

Contents
1 Introduction
2 Application of thiol-ene "click" reaction in the field of monolith preparation
2.1 Surface modification of monoliths via thiol-ene "click" reaction
2.2 "One-pot" synthesis of monolithic columns via thiol-ene "click" reaction
3 Conclusion and outlook

CLC Number: 

[1] Ishizuka N, Kobayashi H, Minakuchi H, Nakanishi K, Hirao K, Hosoya K, Ikegami T, Tanaka N. J. Chromatogr. A, 2002, 960: 85.
[2] Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Anal. Chem., 2006, 78: 7632.
[3] Gusev I, Huang X, Horvath C. J. Chromatogr. A, 1999, 855: 273.
[4] Premstaller A, Oberacher H, Huber C G. Anal. Chem., 2000, 72, 4386.
[5] Holdšvendová P, Coufal P, Suchánková J, Tesa D?ová E, Bosakova Z. J. Sep. Sci., 2003, 26: 1623.
[6] Moravcová D, Jandera P, Urban J, Planeta J. J. Sep. Sci., 2003, 26: 1005.
[7] Ueki Y, Umemura T, Li J, Odake T, Tsunoda K. Anal. Chem., 2004, 76: 7007.
[8] Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini G. J. Sep. Sci., 2007, 30: 3069.
[9] Mallik R, Jiang T, Hage D S. Anal. Chem., 2004, 76: 7013.
[10] Wang S, Zhang R. Sep. Sci. Technol., 2007, 42: 1079.
[11] Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle L D, Horvath C, Wilkins J A. Anal. Chem., 2005, 77: 1398.
[12] Li Y, Xiang R, Horvath C, Wilkins J A. Electrophoresis, 2004, 25: 545.
[13] Kacprzak K M, Maier N M, Lindner W. J. Chromatog. A, 2011, 1218: 1452.
[14] Salwiński A, Roy V, Agrofoglio L A, Delépée R. Macromol. Chem. Phys., 2011, 212: 2700.
[15] Celebi B, Bayraktar A, Tuncel A. Anal. Bioanal. Chem., 2012, 403: 2655.
[16] Slater M D, Frechet J M, Svec F. J. Sep. Sci., 2009, 32: 21.
[17] Guerrouache M, Millot M C, Carbonnier B. Macromol. Rapid Commun., 2009, 30: 109.
[18] Hayes J D, Malik A. Anal. Chem., 2000, 72: 4090.
[19] Yan L, Zhang Q, Zhang J, Zhang L, Li T, Feng Y, Zhang W, Zhang Y. J. Chromatogr. A, 2004, 1046: 255.
[20] Yan L J, Zhang Q H, Feng Y Q, Zhang W B, Li T, Zhang L H, Zhang Y K. J. Chromatogr. A, 2006, 1121: 92.
[21] Xu L, Lee H K. J. Chromatogr. A, 2008, 1195: 78.
[22] Li Y, Song C, Zhang L, Zhang W, Fu H. Talanta, 2010, 80: 1378.
[23] Tian Y, Zhang L, Zeng Z, Li H. Electrophoresis, 2008, 29: 960.
[24] Chen Y, Wu M, Wang K, Chen B, Yao S, Zou H, Nie L. J. Chromatogr. A, 2011, 1218: 7982.
[25] Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Anal. Chem., 2008, 80: 2949.
[26] Wu M, Chen Y, Wu R, Li R, Zou H, Chen B, Yao S. J. Chromatogr. A, 2010, 1217: 4389.
[27] Wu M, Wu R, Wang F, Ren L, Dong J, Liu Z, Zou H. Anal. Chem., 2009, 81: 3529.
[28] Dong M, Wu M, Wang F, Qin H, Han G, Dong J, Wu R, Ye M, Liu Z, Zou H. Anal. Chem., 2010, 82: 2907.
[29] Zhang Z, Wu M, Wu R, Dong J, Ou J, Zou H. Anal. Chem., 2011, 83: 3616.
[30] Campos L M, Killops K L, Sakai R, Paulusse J M, Damiron D, Drockenmuller E, Messmore B W, Hawker C J. Macromolecules, 2008, 41: 7063.
[31] Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D, Hawker C J. Adv. Mater., 2008, 20: 3728.
[32] Killops K L, Campos L M, Hawker C J. J. Am. Chem. Soc., 2008, 130: 5062.
[33] Lowe A B. Polym. Chem., 2010, 1: 17.
[34] Warren N J, Muise C, Stephens A, Armes S P, Lewis A L. Langmuir, 2012, 28: 2928.
[35] Zhang Q, Li G Z, Becer C R, Haddleton D M. Chem. Commun., 2012, 48: 8063.
[36] Bhairamadgi N S, Gangarapu S, Caipa Campos M A, Paulusse J M, van Rijn C J, Zuilhof H. Langmuir, 2013, 29(14): 4535.
[37] Wang K, Chen Y, Yang H, Li Y, Nie L, Yao S. Talanta, 2012, 91: 52.
[38] Chen Y, Wang K, Yang H, Liu Y, Yao S, Chen B, Nie L, Xu G. J. Chromatogr. A, 2012, 1233: 91.
[39] Dao T T H, Guerrouache M, Carbonnier B. Chin. J. Chem., 2012, 30: 2281.
[40] Guerrouache M, Mahouche-Chergui S, Chehimi M M, Carbonnier B. Chem. Commun., 2012, 48: 7486.
[41] Tijunelyte I, Babinot J, Guerrouache M, Valincius G, Carbonnier B. Polymer, 2012, 53: 29.
[42] Han H, Wang Q, Liu X, Jiang S. J. Chromatogr. A, 2012, 1246: 9.
[43] Lv Y, Lin Z, Svec F. Analyst, 2012, 137: 4114.
[44] Yang H, Chen Y, Liu Y, Nie L, Yao S. Electrophoresis, 2013, 34: 510.
[45] Liu Y, Chen Y, Yang H, Nie L, Yao S. J. Chromatogr. A, 2013, 1283: 132.
[46] Chen M L, Zhang J, Zhang Z, Yuan B F, Yu Q W, Feng Y Q. J. Chromatogr. A, 2013, 1284: 118.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[6] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[7] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[8] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[9] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[12] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[13] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[14] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[15] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.