中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 125-139 DOI: 10.7536/PC130525 Previous Articles   Next Articles

• Review •

Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators

Wang Sai1,2, Wu Bin1, Duan Junfei1, Fang Jianglin*2, Chen Dongzhong*1   

  1. 1. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. Center for Materials Analysis, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20874044) and Fundamental Research Plan Project of Jiangsu Province (No. BK2010244)

PDF ( 1010 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular gels with various ordered structures are constructed by the self-assembly of low-molecular-weight gelators (LMWGs) in some solvents driven by non-covalent interactions such as hydrogen bonding, π-π interactions, hydrophobic effects, and van der Waals interactions. Urea derivatives are among the most effective gelators for self-assembling supramolecular gels due to their strong hydrogen-bonding capability and various interactions and responsiveness to anion, metal cation and halide. In this paper, some representative research works especially the recent progress on functional supramolecular gels constructed from urea-based gelators are reviewed according to mono-, bis-and multi-urea systems. Furthermore, brief comments are made on their reversible sol-gel transformation and possible applications for some typical cases from the viewpoint of finely tuning the dissolution-aggregation balance mainly based on molecular design of gelators and the optimization of their gelation conditions. Finally,the research trends and application perspectives of supramolecular gels are concisely expected and point out that after many years rapid development in this field, the clear understanding of gelation kinetics and the mechanism involved are the imperative and challenging work, and multi-component supramolecular gels with complex internal structures and controllable physical properties showing fast response to variant external stimuli may constitute the new generation of functional gels.

Contents
1 Introduction to supramolecular gels
2 Mono-urea functional supramolecular gels
3 Bis-urea functional supramolecular gels
3.1 Bis-urea gels with aliphatic spacer
3.2 Bis-urea gels with aromatic spacer
4 Multi-urea functional supramolecular gels
5 Conclusions and outlook

CLC Number: 

[1] Flory P J. Faraday Discuss, 1974, 57: 7.
[2] Terech P, Weiss R G. Chem. Rev., 1997, 97: 3133.
[3] Abdallah D J, Weiss R G. Adv. Mater., 2000, 12: 1237.
[4] Fages F, Vögtle F, ?ini D? M. Top. Curr. Chem., 2005, 256: 77.
[5] Estroff L A, Hamilton A D. Chem. Rev., 2004, 104: 1201.
[6] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821.
[7] George M, Weiss R G. Acc. Chem. Res., 2006, 39: 489.
[8] Dastidar P. Chem. Soc. Rev., 2008, 37: 2699.
[9] Smith D K. Chem. Soc. Rev., 2009, 38: 684.
[10] Piepenbrock M M, Lloyd G O, Clarke N, Steed J W. Chem. Rev., 2010, 110: 1960.
[11] Buerkle L E, Rowan S. J. Chem. Soc. Rev., 2012, 41: 6089.
[12] Tomasini C, Castellucci N. Chem. Soc. Rev., 2013, 42: 156.
[13] Hirst A R, Escuder B, Miravet J F, Smith D K. Angew. Chem. Int. Ed., 2008, 47: 8002.
[14] Wang X, Horri A, Zhang S. Soft Matter, 2008, 4: 2388.
[15] Stupp S I. Nano Lett., 2010, 10: 4783.
[16] Silva G A, Czeisler C, Niece K L, Beniash E, Harrington D A, Kessler J A, Stupp S I. Science, 2004, 303: 1352.
[17] Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A. J. Am. Chem. Soc., 2005, 127: 11134.
[18] de Jong J J D, Lucas L N, Kellogg R M, van Esch J H, Feringa B L. Science, 2004, 304: 278.
[19] Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S, Fujita N, Shinkai S. Angew. Chem. Int. Ed., 2006, 45: 1592.
[20] Kato T, Yasuda T, Kamikawa Y, Yoshio M. Chem. Commun., 2009: 729.
[21] Kato T, Hirai Y, Nakaso S, Moriyama M, Chem. Soc. Rev., 2007, 36: 1857.
[22] Yagai S, Kubota S, Iwashima T, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A. Chem. Eur. J., 2008, 14: 5246.
[23] Kitamura T, Nakaso S, Mizoshita N, Tochigi Y, Shimomura T, Moriyama M, Ito K, Kato T. J. Am. Chem. Soc., 2005, 127: 14769.
[24] Segarra-Maset M D, Nebot V J, Miravet J F, Escuder B. Chem. Sov. Rev., 2013, 42: 7086.
[25] Yang X Y, Zhang G X, Zhang D Q. J. Mater. Chem., 2012, 22: 38.
[26] 孔丽(Kong L), 孙涛(Sun T), 张峰(Zhang F), 辛飞飞(Xin F F), 郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(5): 790.
[27] 王毓江(Wang Y J), 唐黎明(Tang L M), 于建(Yu J). 化学进展(Progress in Chemistry), 2009, 21(6): 1312.
[28] 周义锋(Zhou Y F). 化学进展(Progress in Chemistry), 2011, 23(1): 125.
[29] 沈利英(Shen L Y), 陈肖卓(Chen X Z), 于海涛(Yu H T), 梁刚(Liang G). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29(3): 321.
[30] Steed J W. Chem. Sov. Rev., 2010, 39: 3686.
[31] Lloyd G O, Steed J W. Nature Chem., 2009, 1: 437.
[32] Foster J A, Piepenbrock M M, Lloyd G O, Clarke N, Howard J A K, Steed J W. Nature Chem., 2010, 2: 1037.
[33] George M, Tan G, John V T, Weiss R G. Chem. Eur. J., 2005, 11: 3243.
[34] Rodrguez-Llansola F, Escuder B, Miravet J F, Hermida-Merino D, Hamley I W, Cardin C J, Hayes W. Chem. Commun., 2010, 46: 7960.
[35] Ghosh K, Kar D. Org. Biomol. Chem., 2012, 10: 8800.
[36] Wang G, Hamilton A D. Chem. Commun., 2003: 310.
[37] Patra T, Pal A, Dey J. J. Colloid Interface Sci., 2010, 344: 10.
[38] Pal A, Dey J. Langmuir, 2011, 27: 3401.
[39] Pal A, Dey J. Langmuir, 2013, 29: 2120.
[40] Wang C, Zhang D Q, Xiang J F, Zhu D B. Langmuir, 2007, 23: 9195.
[41] Hwang I, Jeon W S, Kim H J, Kim D, Kim H, Selvapalam N, Fujita N, Shinkai S, Kim K. Angew. Chem. Int. Ed., 2007, 46: 210.
[42] Tsuge A, Matsushita R, Sakura K, Moriguchi T, Araki K. Chem. Lett., 2012, 41: 485.
[43] Mutoh K, Abe J. Chem. Commun., 2011, 47: 8868.
[44] Hsueh S Y, Kuo C T, Lu T W, Lai C C, Liu Y H, Hsu H F, Peng S M, Chen C H, Chiu S H. Angew. Chem. Int. Ed., 2010, 49: 9170.
[45] Kida T, Marui Y, Miyawaki K, Kato T, Akashi M. Chem. Commun., 2009, 3889.
[46] Jung J H, Kobayashi H, Masuda M, Shimizu T, Shinkai S. J. Am. Chem. Soc., 2001, 123: 8785.
[47] van der L S, Feringa B L, Kellogg R M, van Esch. J H. Langmuir, 2002, 18: 7136.
[48] Adarsh N N, Kumar D K, Dastidar P. Tetrahedron, 2007, 63: 7386.
[49] Arai S, Imazu K, Kusuda S, Yoshihama I, Tonegawa M, Nishimura Y, Kitahara K, Oishi S, Takemura T. Chem. Lett., 2006, 35: 634.
[50] Braga D, d'Agostino S, D'Amen E, Grepioni F. Chem. Commun., 2011, 47: 5154.
[51] van Esch J, Feyter S D, Kellogg R M, Schryver F D, Feringa B L S. Chem. Eur. J., 1997, 3: 1238.
[52] van Esch J, Kellogg R M, Feringa B L. Tetrahedron Lett., 1997, 38: 281.
[53] Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Chem. Commun., 2008, 2644.
[54] Lloyd G O, Piepenbrock M O M, Foster J A, Clarke N, Steed J W. Soft Matter, 2012, 8: 204.
[55] Yagai S, Kubota S, Iwashima T, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A. Chem. Eur. J., 2008, 14: 5246.
[56] Coates I A, Smith D K. Chem. Eur. J., 2009, 15: 6340.
[57] Edwards W, Lagadec C A, Smith D K. Soft Matter, 2011, 7: 110.
[58] Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Tetrahedron, 2007, 63: 7397.
[59] Rubio J, Martí-Centelles V, Burguete M I, Luis S V. Tetrahedron, 2013, 69: 2302.
[60] van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek A L, Kellogg R M, Feringa B L. Chem. Eur. J., 1999, 5: 937.
[61] de Loos M, van Esch J, Stokroos I, Kellogg R M, Feringa B L. J. Am. Chem. Soc., 1997, 119: 12675.
[62] Brinksma J, Feringa B L, Kellogg R M, Vreeker R, van Esch J. Langmuir, 2000, 16: 9249.
[63] de Loos M, van Esch J, Kellogg R M, Feringa B L. Angew. Chem. Int. Ed., 2001, 40: 613.
[64] Carr A J, Melendez R, Geib S J, Hamilton A D. Tetrahedron Lett., 1998, 39: 7447.
[65] Yabuuchi K, Emmanuel M O, Kato T. Org. Biomol. Chem., 2003, 1: 3464.
[66] Yang H, Yi T, Zhou Z G, Zhou Y F, Wu J, Xu M, Li F Y, Huang C H. Langmuir, 2007, 23: 8224.
[67] Zhang C, Wang J, Wang J J, Li M, Yang X L, Xu H B. Chem. Eur. J., 2012, 18: 14954.
[68] Qi Z, de Molina P M, Jiang W, Wang Q, Nowosinski K, Schulz A, Gradzielski M, Schalley C A. Chem. Sci., 2012, 3: 2073.
[69] Das A, Ghosh S. Chem. Eur. J., 2010, 16: 13622.
[70] Schoonbeek F S, van Esch J H, Wegewijs B. Angew. Chem. Int. Ed., 1999, 38: 1393.
[71] Akazawa M, Uchida K, de Jong J J D, Areephong J, Stuart M, Caroli G, Browne W R, Feringa B L. Org. Biomol. Chem., 2008, 6: 1544.
[72] Miravet J F, Escuder B. Org. Lett., 2005, 7: 4791.
[73] Dou C D, Wang C G, Zhang H Y, Gao H Z, Wang Y. Chem. Eur. J., 2010, 16: 10744.
[74] Piepenbrock, M O M, Clarke N, Steed J W. Langmuir, 2009, 25(15): 8451.
[75] Piepenbrock, M O M, Clarke N, Steed J W. Soft Matter, 2010, 6: 3541.
[76] Piepenbrock, M O M, Clarke N, Steed J W. Soft Matter, 2011, 7: 2412.
[77] Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Nature Chem., 2013, 5: 42.
[78] Yamanaka M. J. Incl. Phenom. Macrocycl. Chem., 2013, 77: 33.
[79] de Loos M, Ligtenbarg, A G J, van Esch J, Kooijman H, Spek A L, Hage R, Kellogg R M, Feringa B L. Eur. J. Org. Chem., 2000, 3675.
[80] Stanley C E, Clarke N, Anderson K M, Elder J A, Lenthall J T, Steed J W. Chem. Commun., 2006, 3199.
[81] Zhou Y F, Yi T, Li T C, Zhou Z G, Li F Y, Huang W, Huang C H. Chem. Mater., 2006, 18: 2974.
[82] Deng C, Fang R, Guan Y F, Jiang J L, Lin L, Wang L Y. Chem. Commun., 2012, 48: 7973.
[83] de Loos M, van Esch J H, Kellogg R M, Feringa B L. Tetrahedron., 2007, 63: 7285.
[84] Yamanaka M, Nakamura T, Nakagawa T, Itagaki H. Tetrahedron Lett., 2007, 48: 8990.
[85] Aoyama R, Amakatsu M, Yamanaka M. Supramol. Chem., 2011, 23: 140.
[86] Yamamichi S, Jinno Y, Haraya N, Oyoshi T, Tomitori H, Kashiwagi K, Yamanaka M. Chem. Commun., 2011, 47: 10344.
[87] Jinno Y, Yamanaka M. Chem. Asian J., 2012, 7: 1768.
[88] Yamanaka M, Haraya N, Yamamichi S. Chem. Asian J., 2011, 6: 1022.
[89] Tamaru S, Uchino S, Takeuchi M, Ikeda M, Hatano T, Shinkai S. Tetrahedron Lett., 2002, 43: 3751.
[90] Kishida T, Fujita N, Sada K, Shinkai S. Langmuir, 2005, 21: 9432.
[91] Lu C C, Su S K. Supramol. Chem., 2009, 21: 557.
[92] Ladet S, David L, Domard A. Nature, 2008, 452: 76.
[93] Elisseeff J. Nature Mater., 2008, 7: 271.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[9] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[12] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[13] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[14] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[15] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.