中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2131-2146 DOI: 10.7536/PC130506 Previous Articles   Next Articles

• Review •

Colorimetric and Fluorescent Cyanide Anion Sensors

Lin Qi*, Liu Xin, Chen Pei, Wei Taibao, Zhang Youming*   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
PDF ( 1469 ) Cited
Export

EndNote

Ris

BibTeX

Because of the extreme toxicity of cyanide anions, the development of colorimetric and fluorescent sensors for the cyanide anion (CN-) has received considerable attention. Among numerous CN- sensors, the colorimetric or fluorescent sensors received more and more attention because these kinds of sensors possess a lot of advantages such as high sensitivity, does not require expensive equipment and easy to operate. This review article highlights advances in the research of colorimetric or fluorescent sensors for the cyanide anion after 2006. According to recognition mechanisms of these sensors, we grouped them into six categories, including hydrogen bond based CN- sensors, deprotonation based CN- sensors, addition reaction based CN- sensors, coordination based sensors, nano-material based CN- sensors, and the sensors based on other recognition mechanism. This review summarizes the main design principles, CN- recognition abilities of the sensors. The developing orientation for further research is presented.

Contents
1 Introduction
2 Design principles of colorimetric and fluorescent CN-sensors
3 Hydrogen bond based CN-sensors
4 Deprotonation based CN-sensors
5 Addition reaction based CN-sensors
5.1 Addition of CN-to alkene
5.2 Addition of CN-to boride
5.3 Addition of CN-to Schiff base
5.4 Addition of CN-to spiro-compound
5.5 Addition of CN-to carbonyl group
6 Coordination based CN-sensors
6.1 Direct coordination
6.2 Competitive coordination
7 Nano-material based CN-sensors
8 Sensors based on other recognition mechanism
9 Conclusion and outlook

CLC Number: 

[1] Holland M A, Kozlowski L M. Clinical Pharmacy, 1986, 5: 737—741
[2] Koening R. Science, 2000, 287: 1737—1738
[3] Young C, Tidwell L, Anderson C. Cyanide: Social, Industrial, and Economic Aspects. Warrendale: Minerals, Metals, and Materials Society, 2001
[4] Baud F J. Hum. Exp. Toxicol., 2007, 26: 191—201
[5] Guidelines for Drinking-Water Quality. Geneva: World Health Organization, 1996
[6] Way J L. Annu. Rev. Pharmacol., 1984, 24: 451-481
[7] Anderson R A, Harland W A. Med. Sci. Law, 1982, 22: 35—40
[8] Zamecnik J, Tam J J. Anal. Toxicol., 1987, 11: 47—48
[9] Bark L S, Higson H G. Analyst, 1963, 88: 751—760
[10] Barnes D E, Wright P J, Graham S M, Jones-Watson E A. Geostand. Geoanal. Res., 2000, 24: 183—195
[11] Chattaraj S, Das A K. Analyst, 1991, 116: 739—741
[12] Yen S, Wang C T, Wang J S. Chem. Engin. Commun., 1991, 109: 167—180
[13] Xu Z, Chen X, Kim H N, Yoon J. Chem. Soc. Rev., 2010, 39: 127—137
[14] Du J, Hu M, Fan J, Peng X. Chem. Soc. Rev., 2012, 41: 4511—4535
[15] Yang Y, Zhao Q, Feng W, Li F. Chem. Rev., 2013, 113: 192—270
[16] Lin Q, Fu Y P, Chen P, Wei T B, Zhang Y M. Dyes Pigments, 2013, 96: 1—6
[17] Zhang Y M, Lin Q, Wei T B, Li Y, Qin X P. Chem. Commun., 2009, 6074—6076
[18] Zhang Y M, Lin Q, Wei T B, Wang D D. Sens. Actuators B, 2009, 137: 447—455
[19] Bianchi A, Bowman J K, Garcia E E. Supramolecular Chemistry of Anions. New York: Wiley-VCH, 1997
[20] Liu J, Liu Y, Liu Q, Li C, Sun L, Li F. J. Am. Chem. Soc., 2011, 133: 15276—15279
[21] Reddy G U, Das P, Saha S, Baidya M, Ghosh S K, Das A. Chem. Commun., 2013, 49: 255—257
[22] Jo J, Lee D. J. Am. Chem. Soc., 2009, 131: 16283—16291
[23] Mo H J, Shen Y, Ye B H. Inorg. Chem., 2012, 51: 7174—7184
[24] Zhou D, Boon E M. J. Am. Chem. Soc., 2010, 132: 11496-11503
[25] Cho D G, Kim J H, Sessler J L. J. Am. Chem. Soc., 2008, 130: 12163—12167
[26] McDonagh C, Burke C S, MacCraith B D. Chem. Rev., 2008, 108: 400—422
[27] Chen X Q, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112: 1910—1956
[28] Lin Q, Chen P, Fu Y P, Zhang Y M, Shi B B, Zhang P, Wei T B. Chin. Chem. Lett., 2013, 24(8): 699—702
[29] Saha S, Ghosh A, Mahato P, Mishra S, Mishra S K, Suresh E, Das S, Das A. Org. Lett., 2010, 12: 3406—3409
[30] Kumar V, Kaushik M P, Srivastava A K, Pratap A, Thiruvenkatam V, Row T N. Anal. Chim. Acta, 2010, 663: 77—84
[31] Shahid M, Razi S S, Srivastava P, Ali R, Maiti B, Misra A. Tetrahedron, 2012, 68: 9076—9084
[32] Odago M O, Colabello D M, Lees A J. Tetrahedron, 2010, 66: 7465—7471
[33] Kumari N, Jha S, Bhattacharya S. J. Org. Chem., 2011, 76: 8215—8222
[34] Yao L M, Zhou J, Liu J L, Feng W, Li F Y. Adv. Funct. Mater., 2012, 22: 2667—2672
[35] Kumari N, Jha S, Bhattacharya S. Chem. Asian J., 2012, 7: 2805—2812
[36] Suna Y, Chena H H, Cao D X, Liu Z Q, Che H Y, Deng Y L, Fang Q. J. Photochem. Photobiol. A, 2012, 244: 65—70
[37] Yuan L, Lin W Y, Yang Y, Song J Z, Wang J L. Org. Lett., 2011, 13: 3730—3733
[38] Zhou X S, Lv X, Hao J S, Liu D S, Guo W. Dyes Pigments, 2012, 95: 168—173
[39] Lou B, Chen Z Q, Bian Z Q, Huang C H. New J. Chem., 2010, 34: 132—136
[40] Liu Z P, Wang X Q, Yang Z H, He W J. J. Org. Chem., 2011, 76: 10286—10290
[41] Wu X F, Xu B W, Tong H, Wang L X. Macromolecules, 2011, 44: 4241—4248
[42] Fu G L, Zhao C H. Tetrahedron, 2013, 69: 1700—1704
[43] 林奇(Lin Q), 符永鹏(Fu Y P), 张有明(Zhang Y M), 魏太保(Wei T B), 陈佩(Chen P), 朱鑫(Zhu X). CN102863406A, 2013
[44] Yang L, Li X, Yang J B, Qu Y, Hua J L. Appl. Mater. Interfaces, 2013, 5: 1317—1326
[45] Fillaut J L, Akdas-Kilig H, Dean E, Latouche C, Boucekkine A. Inorg. Chem., 2013, 52: 4890—4897
[46] Dong M, Peng Y, Dong Y M, Tang N, Wang Y W. Org. Lett., 2012, 14: 130—133
[47] Kim G J, Kim H J. Tetrahedron Letters, 2010, 51: 185—187
[48] Kim G J, Kim H J. Tetrahedron Letters, 2010, 51: 2914—2916
[49] Niu H T, Jiang X L, He J Q, Cheng J P. Tetrahedron Letters, 2009, 50: 6668—6671
[50] Kim Y M, Zhao H Y, Gabbai F P. Angew. Chem. Int. Ed., 2009, 48: 4957—4960
[51] Kim Y M, Huh H S, Lee M H, Lenov I L, Zhao Y, Gabbai F P. Chem. Eur. J., 2011, 17: 2057—2062
[52] Guliyev R, Ozturk S, Sahin E, Akkaya E U. Org. Lett., 2012, 14: 1528—1531
[53] Chaicham A, Kulchat S, Tumcharern G, Tuntulani T, Tomapatanaget B. Tetrahedron, 2010, 66: 6217—6223
[54] Palomares B E, Martínez-Díaz M V, Torres T, Coronado E. Adv. Funct. Mater., 2006, 16: 1166—1170
[55] Yoshino J, Kano N, Kawashima T. J. Org. Chem., 2009, 74: 7496—7503
[56] Sun Y, Liu Y L, Guo W. Sens. Actuators B, 2009, 143: 171—176
[57] Sun Y, Liu Y L, Chen M L, Guo W. Talanta, 2009, 80: 996—1000
[58] Shiraishi Y, Adachi K, Itoh M, Hirai T. Org. Lett., 2009, 11: 3482—3485
[59] Zhu S Y, Li M J, Sheng L, Chen P, Zhang Y, Zhang S X A. Analyst, 2012, 137: 5581—5585
[60] Ren J Q, Zhu W H, Tian H. Talanta, 2008, 75: 760—764
[61] Shiraishi Y, Itoh M, Hirai T. Tetrahedron Letters, 2011, 52: 1515—1519
[62] Ekmekci Z, Yilmaz M D, Akkaya E U. Org. Lett., 2008, 10: 461—464
[63] Lv X, Liu J, Liu Y L, Zhao Y, Chen M L, Wang P, Guo W. Sens. Actuators B, 2011, 158: 405—410
[64] Li H D, Li B, Jin L Y, Kan Y H, Yin B Z. Tetrahedron, 2011, 67: 7348—7353
[65] Kwona S K, Kou S Z, Kim H N, Chen X Q, Hwang H, Nama S W, Kim S H, Swamy K M, Park S S, Yoon J Y. Tetrahedron Letters, 2008, 49: 4102—4105
[66] Lee K S, Kim H J, Kim G H, Shin I, Hong J I. Org. Lett., 2008, 10: 49—51
[67] Chung Y M, Raman B, Kim D S, Ahn K H. Chem. Commun., 2006, 186—188
[68] Jo J, Olasz A, Chen C H, Lee D. J. Am. Chem. Soc., 2013, 135: 3620—3632
[69] Duan Y L, Zheng Y S. Talanta, 2013, 107: 332—337
[70] Lee J H, Jeong A, Shin I S, Kim H J, Hong J I. Org. Lett., 2010, 12: 764—767
[71] Zelder F H. Inorg. Chem., 2008, 47: 1264—1266
[72] Männel-Croisé C, Zelder F H. Inorg. Chem., 2009, 48: 1272—1274
[73] Wang J, Ha C S. Tetrahedron, 2010, 66: 1846—1851
[74] Tang L J, Cai M J. Sens. Actuators B, 2012, 173: 862— 867
[75] Jung H S, Han J H, Kim Z H, Kang C H, Kim J S. Org. Lett., 2011, 13: 5056—5059
[76] Guliyev R, Buyukcakir O, Sozmen F, Bozdemir O A. Tetrahedron Letters, 2009, 50: 5139—5141
[77] Xu Z C, Pan J, Spring D R, Cui J N, Yoon J Y. Tetrahedron, 2010, 66: 1678—1683
[78] Yang R, Wu W B, Wang W Y, Li Z, Qin J G. Macromol. Chem. Phys., 2010, 211: 18—26
[79] Chen X Q, Nam S W, Kim G H, Song N, Jeong Y, Shin I, Kim S K, Kim J H, Park S S, Yoon J. Chem. Commun., 2010, 46: 8953—8955
[80] Lou X D, Qiang L, Qin J G, Li Z. ACS Appl. Mater. Interfaces, 2009, 1: 2529—2535
[81] Lou X D, Qin J G, Li Z. Analyst, 2009, 134: 2071—2075
[82] Guo Y Y, Tang X L, Hou F P, Wu J, Dou W, Qin W W, Ru J X, Zhang G L, Liu W S, Yao X J. Sens. Actuators B, 2013, 181: 202— 208
[83] Kim M H, Kim S, Jang H H, Yi S J, Seo S H, Han M S. Tetrahedron Letters, 2010, 51: 4712—4716
[84] Lou X D, Zhang Y, Qin J G, Li Z. Chem. Eur. J., 2011, 17: 9691—9696
[85] Liu J, Liu Y, Li C, Sun L, Li F. J. Am. Chem. Soc., 2011, 133: 15276—15279
[86] Ajayakumar M R, Mukhopadhyay P. Org. Lett., 2010, 12: 2646—2649

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[5] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[6] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[7] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[8] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.
[9] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[10] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[11] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[12] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.
[13] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[14] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[15] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.