中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2038-2052 DOI: 10.7536/PC130435 Previous Articles   Next Articles

• Review •

Synthesis, Properties and Applications of Gold or Silver Nanoparticles Loaded Intelligent Hybrid Microgels

Dong Xu, Liu Xiaoyun, Zha Liusheng*   

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received: Revised: Online: Published:
PDF ( 1030 ) Cited
Export

EndNote

Ris

BibTeX

The noble metal nanoparticles (NMNPs) including gold or silver nanoparticles loaded intelligent hybrid microgels are the advanced functional materials which combine the unique properties of both the NMNPs and intelligent microgels. Their prominent characteristic is that a variety of properties of the loaded NMNPs within the microgels can be tuned by external stimulus, or the external stimulus can be sensed by determining the change of their properties. Based on their morphological structure, the reported gold or silver nanoparticles loaded intelligent hybrid microgels are classified into four types in this paper, including randomly filling type, core-shell structure type, surface covering type and sandwich structure type. Their respective features and main synthesis methods are introduced. Additionally, the characterization methods of their structure and composition, their stimulus responsiveness, tunable localized surface plasmon resonance, surface enhancement effect and fluorescence property are reviewed. The application research progress of the intelligent hybrid microgels in smart microreactor, microsensor, the substrate of surface enhanced Raman scattering, drug delivery carrier and biological imaging are also presented. Finally, their research direction and development outlook are commented.

Contents
1 Introduction
2 Synthesis methods of AuNP or AgNP loaded intelligent hybrid microgels
2.1 Randomly filling type
2.2 Core-shell structure type
2.3 Surface covering type
2.4 Sandwich structure type
3 The structure, composition and their characterization methods of AuNP or AgNP loaded intelligent hybrid microgels
3.1 The morphological structure and its characterization methods
3.2 The surface pattern and its characterization methods
3.3 The content of the loaded AuNP or AgNP within the intelligent hybrid microgels and its analysis methods
3.4 The hydrodynamic diameter of the intelligent hybrid microgels and its measuring method
3.5 The interaction between the NMNPs and the macromolecular chains within the microgels and its characterization methods
4 Properties of AuNP or AgNP loaded intelligent hybrid microgels
4.1 Stimulus responsive property
4.2 Tunable localized surface plasmon resonance optical property
4.3 Tunable surface electric field enhancement effect
4.4 Tunable fluorescence property
4.5 Photothermal effect and light stimulus responsive property
5 Applications of AuNP or AgNP loaded intelligent hybrid microgels
5.1 Smart microreactor
5.2 The substrate of surface enhanced Raman scattering
5.3 Microsensor
5.4 Drug controlled release and photothermal therapy
5.5 Biological imaging
6 Conclusions and outlooks

CLC Number: 

[1] 陆晨 (Lu C), 查刘生 (Zha L S). 功能高分子学报 (Journal of Functional Polymers), 2012, 25(2): 211—220
[2] Thorne J B, Vine G J, Snowden M J. Colloid Polym. Sci., 2011, 289(5/6): 625—646
[3] Zha L, Banik B, Alexis F. Soft Matter, 2011, 7(13): 5908—5916
[4] Abou El-Nour K M M, Eftaiha A, Al-Warthan A, Ammar R A A. Arab. J. Chem., 2010, 3(3): 135—140
[5] Sharma V K, Yngard R A, Lin Y. Adv. Colloid Interface Sci., 2009, 145(1): 83—96
[6] Daniel M, Astruc D. Chem. Rev., 2004, 104(1): 293—346
[7] Vosch T, Antoku Y, Hsiang J, Richards C I, Gonzalez J I, Dickson R M. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(31): 12616—12621
[8] Thanh N T, Green L A. Nano Today, 2010, 5(3): 213—230
[9] Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Prez-Juste J, Liz-Marzn L M, Hellweg T. Langmuir, 2009, 25(5): 3163—3167
[10] Gorelikov I, Field L M, Kumacheva E. J. Am. Chem. Soc., 2004, 126(49): 15938—15939
[11] Karg M. Colloid Polym. Sci., 2012, 290(8): 673—688
[12] Karg M, Hellweg T. J. Mater. Chem., 2009, 19(46): 8714—8727
[13] Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J. ACS Nano, 2010, 4(12): 7078—7086
[14] Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M. J. Mater. Chem., 2009, 19(23): 3955—3961
[15] Suzuki D, Kawaguchi H. Langmuir, 2006, 22(8): 3818—3822
[16] 王秀琴 (Wang X Q). 东华大学硕士论文 (Master Dissertation of Donghua University), 2013
[17] Zha L S, Liu X Y, Lu C. Adv. Mater. Res., 2013, 650: 268—272
[18] Liu X, Zhang C, Yang J, Lin D, Zhang L, Chen X, Zha L S. RSC Adv., 2013, 3(10): 3384—3390
[19] Liu Y, Liu X, Yang J, Lin D, Chen X, Zha L S. Colloids Surf. A, 2012, 393: 105—110
[20] 刘云芸 (Liu Y Y). 东华大学硕士论文 (Master Dissertation of Donghua University), 2012
[21] Liu X, Guo H, Zha L. Polym. Int., 2012, 61(7): 1144—1150
[22] Kuang M, Wang D, Möhwald H. Adv. Funct. Mater., 2005, 15(10): 1611—1616
[23] Chen Q, Shen X, Gao H. Colloids Surf. A, 2006, 275(1): 45—49
[24] Zhang J, Coombs N, Kumacheva E. J. Am. Chem. Soc., 2002, 124(49): 14512—14513
[25] Wu W, Zhou T, Berliner A, Banerjee P, Zhou S. Chem. Mater., 2010, 22(6): 1966—1976
[26] Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán L M. J. Mater. Chem. A, 2013, 1(1): 20—26
[27] Tokarev I, Minko S. Soft Matter, 2012, 8(22): 5980—5987
[28] Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T. Bioconjugate Chem., 2009, 20(2): 209—212
[29] Wu S, Kaiser J, Drechsler M, Ballauff M, Lu Y. Colloid Polym. Sci., 2013, 291(1): 231—237
[30] Contreras-Cáceres R, Pastoriza-Santos I, Alvarez-Puebla R A, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán L M. Chem. Eur. J., 2010, 16(31): 9462—9467
[31] Singh N, Lyon L A. Chem. Mater., 2007, 19(4): 719—726
[32] Karg M, Jaber S, Hellweg T, Mulvaney P. Langmuir, 2010, 27(2): 820—827
[33] Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, Mulvaney P. Coord. Chem. Rev., 2005, 249(17): 1870—1901
[34] Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera Á R, Liz-Marzán L M. Soft Matter, 2012, 8(15): 4165—4170
[35] Li D, He Q, Cui Y, Wang K, Zhang X, Li J. Chem. Eur. J., 2007, 13(8): 2224—2229
[36] Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán L M. Small, 2007, 3(7): 1222—1229
[37] Zhang Y, Liu K, Guan Y, Zhang Y. RSC Adv., 2012, 2(11): 4768—4776
[38] Li J, He W D, Sun X L. J. Polym. Sci. Part A: Polym. Chem., 2007, 45(22): 5156—5163
[39] Suzuki D, Kawaguchi H. Langmuir, 2005, 21(25): 12016—12024
[40] Suzuki D, Mcgrath J G, Kawaguchi H, Lyon L A. J. Phys. Chem. C, 2007, 111(15): 5667—5672
[41] Contreras-Cáceres R, Sánchez-Iglesias A, Karg M, Pastoriza-Santos I, Pérez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán L M. Adv. Mater., 2008, 20(9): 1666—1670
[42] 邹先波 (Zou X B). 东华大学硕士论文 (Master Dissertation of Donghua University), 2013
[43] Kosuda K M, Bingham J M, Wustholz K L, van Duyne R P. Comprehensive Nanoscience and Technology. Andrews D L, Scholes G D, Wiederrecht G P (Eds.). Oxford: Academic Press, 2011. vol. 3, 263—301
[44] 柯善林 (Ke S L), 阚彩侠 (Kan C X), 莫博 (Mo B), 从博 (Cong B), 朱杰君 (Zhu J J). 物理化学学报 (Acta Phys. Chim. Sin.), 2012, 28(6): 1275—1290
[45] Chen H, Kou X, Yang Z, Ni W, Wang J. Langmuir, 2008, 24(10): 5233—5237
[46] Van Duyne R P. Science, 2004, 306(5698): 985—986
[47] Tagliazucchi M, Blaber M G, Schatz G C, Weiss E A, Szleifer I. ACS Nano, 2012, 6(9): 8397—8406
[48] Lange H, Juárez B H, Carl A, Richter M, Bastús N G, Weller H, Thomsen C, von Klitzing R, Knorr A. Langmuir, 2012, 28(24): 8862—8866
[49] Reinhard B M, Siu M, Agarwal H, Alivisatos A P, Liphardt J. Nano Lett., 2005, 5(11): 2246—2252
[50] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys.: Condens. Matter, 2002, 14(18): 597—624
[51] Koh A L, Fernández-Domínguez A I, Mccomb D W, Maier S A, Yang J K. Nano Lett., 2011, 11(3): 1323—1330
[52] Ko K D, Kumar A, Fung K H, Ambekar R, Liu G L, Fang N X, Toussaint K C. Nano Lett., 2010, 11(1): 61—65
[53] Wang Z L. Prog. Phys., 2009, 29(3): 287—324
[54] Yin P G, Chen Y, Jiang L, You T T, Lu X Y, Guo L, Yang S. Macromol. Rapid Comm., 2011, 32(13): 1000—1006
[55] Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Anal. Bioanal. Chem., 2012, 403(1): 27—54
[56] Guerrero-Martínez A, Grzelczak M, Liz-Marzán L M. ACS Nano, 2012, 6(5): 3655—3662
[57] Schmidt S, Motschmann H, Hellweg T, von Klitzing R. Polymer, 2008, 49(3): 749—756
[58] De Souza N. Nat. Methods, 2007, 4(7): 540
[59] Zhang J, Xu S, Kumacheva E. Adv. Mater., 2005, 17(19): 2336—2340
[60] Wu W, Mitra N, Yan E C Y, Zhou S. ACS Nano, 2010, 4(8): 4831—4839
[61] Wu W, Shen J, Banerjee P, Zhou S. Biomaterials, 2010, 31(29): 7555—7566
[62] Wu W, Zhou T, Zhou S. Chem. Mater., 2009, 21(13): 2851—2861
[63] Huang X, Jain P K, El-Sayed I H, El-Sayed M A. Laser. Med. Sci., 2008, 23(3): 217—228
[64] Jain P K, Huang X, El-Sayed I H, El-Sayed M A. Accounts Chem. Res., 2008, 41(12): 1578—1586
[65] Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S. Biophys. J., 2006, 90(2): 619—627
[66] Khlebtsov N G, Dykman L A. J. Quant. Spectrosc. Radiat. Transfer, 2010, 111(1): 1—35
[67] Link S, Burda C, Mohamed M B, Nikoobakht B, El-Sayed M A. J. Phys. Chem. A, 1999, 103(9): 1165—1170
[68] Link S, Burda C, Nikoobakht B, El-Sayed M A. J. Phys. Chem. B, 2000, 104(26): 6152—6163
[69] Satarkar N S, Biswal D, Hilt J Z. Soft Matter, 2010, 6(11): 2364—2371
[70] Das M, Sanson N, Fava D, Kumacheva E. Langmuir, 2007, 23(1): 196—201
[71] Karg M, Hellweg T. Curr. Opin. Colloid In., 2009, 14(6): 438—450
[72] Rodríguez-Fernández J, Fedoruk M, Hrelescu C, Lutich A A, Feldmann J. Nanotechnology, 2011, 22(24): art. no. 245708
[73] Pich A, Karak A, Lu Y, Ghosh A K, Adler H P. J. Nanosci. Nanotechnol., 2006, 6(12): 3763—3769
[74] Guerrini L, Garcia-Ramos J V, Domingo C, Sanchez-Cortes S. J. Phys. Chem. C, 2008, 112(20): 7527—7530
[75] Alvarez-Puebla R A, Arceo E, Goulet P J, Garrido J J, Aroca R F. J. Phys. Chem. B, 2005, 109(9): 3787—3792
[76] lvarez-Puebla R A, Contreras Cáceres R, Pastoriza Santos I, Pérez Juste J, Liz Marzán L M. Angew. Chem. Int. Ed., 2009, 48(1): 138—143
[77] Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla R A, Liz-Marzán L M. Langmuir, 2011, 27(8): 4520—4525
[78] Wu W, Shen J, Li Y, Zhu H, Banerjee P, Zhou S. Biomaterials, 2012, 33(29): 7115—7125
[79] Wu W, Shen J, Gai Z, Hong K, Banerjeea P, Zhou S. Biomaterials, 2011, 32(36): 9876—9887
[80] Nakamura T, Tamura A, Murotani H, Oishi M, Jinji Y, Matsuishi K, Nagasaki Y. Nanoscale, 2010, 2(5): 739—746
[81] Wu W, Shen J, Banerjee P, Zhou S. Biomaterials, 2011, 32(2): 598—609
[82] Tang H, Shen S, Guo J, Chang B, Jiang X, Yang W. J. Mater. Chem., 2012, 22(31): 16095—16103
[83] Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Anal. Bioanal. Chem., 2008, 391(7): 2469—2495
[84] Sau T K, Rogach A L, Jäckel F, Klar T A, Feldmann J. Adv. Mater., 2010, 22(16): 1805—1825
[85] 马占芳 (Ma Z F), 田乐 (Tian L), 邸静 (Di J), 丁腾 (Ding T). 化学进展 (Procress in Chemistry), 2009, 21(1): 134—142
[86] Zhao X, Wang T, Liu W, Wang C, Wang D, Shang T, Shen L, Ren L. J. Mater. Chem., 2011, 21(20): 7240—7247

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[9] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[12] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[13] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[14] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[15] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.