中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2178-2188 DOI: 10.7536/PC130424 Previous Articles   Next Articles

• Review •

Zeolite MFI Membranes for Separation of Ethanol/Water Mixture

Peng Yong, Wang Zhengbao*   

  1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
PDF ( 916 ) Cited
Export

EndNote

Ris

BibTeX

Zeolite MFI membranes have been targeted for potential applications in many research fields such as separation and catalysis and therefore attracted a great deal of research interest worldwide. Pure silica zeolite MFI membrane, ascribed to its strong hydrophobicity, exhibits high separation performance for ethanol/water mixtures. Recent advances of zeolite MFI membrane utilized for ethanol aqueous solution pervaporation separation are reviewed in this paper. The effect of preparation strategies including synthesis method (in situ crystallization and seeding method), membrane support, synthesis solution composition, synthesis condition (synthesis temperature and time), and calcination condition on the separation performance of the synthesized zeolite MFI membranes are demonstrated in detail. The underlying separation mechanism investigated by both of the experimental research and the theoretical simulation are summarized. The findings provide useful guidelines for the preparation and/or post-synthesis of zeolite MFI membrane. Based on the extensive discussion of the merits and demerits of various preparation strategies, the research trends of zeolite MFI pervaporation membranes are prospected.

Contents
1 Introduction
2 The effect of synthesis method on membrane performance
2.1 In situ hydrothermal synthesis
2.2 Seeded growth
2.3 Comparison between in situ hydrothermal synthesis and seeded growth
3 The effect of membrane support on membrane performance
3.1 The effect of membrane support on separation factor
3.2 The effect of membrane support on permeation flux
4 The effect of synthesis solution on membrane performance
5 The effect of synthesis condition on membrane performance
6 The effect of calcination condition on membrane performance
7 Separation mechanism
8 Summary and outlook

CLC Number: 

[1] Tavolaro A, Drioli E. Adv. Mater., 1999, 11: 975—996
[2] Coronas J, Santamaria J. Sep. Purif. Rev., 1999, 28: 127—177
[3] Caro J, Noack M, Kölsch P, Schäfer R. Microporous Mesoporous Mater., 2000, 38: 3—24
[4] Caro J, Noack M. Microporous Mesoporous Mater., 2008, 115: 215—233
[5] Bernardo P, Drioli E, Golemme G. Ind. Eng. Chem. Res., 2009, 48: 4638—4663
[6] Ockwig N W, Nenoff T M. Chem. Rev., 2007, 107: 4078—4110
[7] Wee S L, Tye C T, Bhatia S. Sep. Purif. Technol., 2008, 63: 500—516
[8] McLeary E E, Jansen J C, Kapteijn F. Microporous Mesoporous Mater., 2006, 90: 198—220
[9] Fong Y Y, Abdullah A Z, Ahmad A L, Bhatia S. Chem. Eng. J., 2008, 139: 172—193
[10] Lew C M, Cai R, Yan Y S. Acc. Chem. Res., 2010, 43: 210—219
[11] Volksen W, Miller R D, Dubois G. Chem. Rev., 2010, 110: 56—110
[12] Sano T, Yanagishita H, Kiyozumi Y, Kitamoto D, Mizukami F. Chem. Lett., 1992, 21: 2413—2414
[13] Shabtai Y, Chaimovitz S, Freeman A, Katchalski-Katzir E, Linder C, Nemas M, Perry M, Kedem O. Biotechnol. Bioeng., 1991, 38: 869—876
[14] Ikegami T, Negishi H, Yanase H, Sakaki K, Okamoto M, Koura N, Sano T, Haraya K, Yanagishita H. J. Chem. Technol. Biotechnol., 2007, 82: 745—751
[15] Caro J, Noack M, Kölsch P. Adsorption, 2005, 11: 215—227
[16] Bowen T C, Noble R D, Falconer J L. J. Membr. Sci., 2004, 245: 1—33
[17] Snyder M A, Tsapatsis M. Angew. Chem. Int. Ed., 2007, 46: 7560—7573
[18] Yu M, Noble R D, Falconer J L. Acc. Chem. Res., 2011, 44: 1196—1206
[19] Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Chem. Mater., 2012, 24: 2829—2844
[20] 郎林(Lang L), 张超(Zhang C), 阴秀丽(Yin X L), 吴创之(Wu C Z). 化学进展(Progress in Chemistry), 2011, 23: 1022—1032
[21] 颜正朝(Yan Z C), 宋军(Song J), 林晓(Lin X), 徐南平(Xu N P). 石油化工(Petrochemical Technology), 2004, 33: 891—900
[22] 刘昶(Liu C), 王金渠(Wang J Q), 刘春艳(Liu C Y), 邵国林(Shao G L), 吕丹(Lü D). 科学技术与工程(Science Technology and Engineering), 2003, 3: 601—606
[23] 冯建立(Feng J L), 李书珍(Li S Z), 王磊(Wang L). 上海化工(Shanghai Chemical Industry), 2005, 30: 31—34
[24] 冼江强(Xian J Q), 黄肖容(Huang X R), 隋贤栋(Sui X D). 广东化工(Guangdong Chemical Industry), 2005, (5): 7—10
[25] 郭杨龙(Guo Y L), 邓志勇(Deng Z Y), 卢冠忠(Lu G Z). 石油化工(Petrochemical Technology), 2008, 37: 865—872
[26] 孙国锋(Sun G F), 王金渠(Wang J Q), 刘垚(Liu Y). 膜科学与技术(Membrane Science and Technology), 2008, 28: 73—78
[27] 李邦民(Li B M), 王金渠(Wang J Q), 丁长胜(Ding C S). 膜科学与技术(Membrane Science and Technology), 2003, 23: 59—68
[28] 许中强(Xu Z Q), 陈庆龄(Chen Q L). 化工进展(Chemical Industry and Engineering Progress), 1998, 4: 8—13
[29] 张延风(Zhang Y F), 卢冠忠(Lu G Z), 许中强(Xu Z Q), 陈庆龄(Chen Q L). 化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2000, 16: 60—66
[30] 张延风(Zhang Y F), 许中强(Xu Z Q), 陈庆龄(Chen Q L). 化工进展(Chemical Industry and Engineering Progress), 2002, 21: 270—274
[31] 成岳(Cheng Y), 李健生(Li J S), 刘媚(Liu M), 孙秀云(Sun X Y), 王连军(Wang L J). 中国陶瓷工业(China Ceramic Industry), 2004, 11: 40—44
[32] 刘赞(Liu Z), 王新忠(Wang X Z), 陈爱民(Chen A M). 工业水处理(Industrial Water Treatment), 2006, 26: 12—18
[33] 张彦改(Zhang Y G), 高会元(Gao H Y), 朱国颖(Zhu G Y), 闫健娜(Yan J N). 化工生产与技术(Chemical Production and Technology), 2011, 18: 22—26
[34] 辛春玲(Xin C L), 连丕勇(Lian P Y), 李其明(Li Q M). 化工科技(Science and Technology in Chemical Industry), 2011, 19: 48—52
[35] 成岳(Cheng Y), 李健生(Li J S), 王连军(Wang L J), 孙秀云(Sun X Y). 化学进展(Progress in Chemistry), 2006, 18: 221—229
[36] Sano T, Yanagishita H, Kiyozumi Y, Mizukami F, Haraya K. J. Membr. Sci., 1994, 95: 221—228
[37] Chen H L, Li Y S, Yang J S, Hou Y X, Song X Y, Hu X J, Yang W S. Chinese Sci. Bull., 2011, 56: 3578—3582
[38] Chen H L, Li Y S, Yang W S. J. Membr. Sci., 2007, 296: 122-130
[39] 孙维国(Sun W G), 杨建华(Yang J H), 王爱芳(Wang A F), 王金渠(Wang J Q), 韩会林(Han H L), 鲁金明(Lu J M). 过程工程学报(The Chinese Journal of Process Engineering), 2008, 8: 599—602
[40] Lin X, Chen X S, Kita H, Okamoto K. AIChE J., 2003, 49: 237—247
[41] 欧阳晓金(Ouyang X J), 周荣飞(Zhou R F), 钟鸣(Zhong M), 陈祥树(Chen X S). 江西师范大学学报(自然科学版)(Journal of Jiangxi Normal University (Natural Science)), 2009, 33: 166—169
[42] Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Sep. Purif. Technol., 2011, 81: 480—484
[43] Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Ind. Eng. Chem. Res., 2012, 51: 11499—11508
[44] 周荣飞(Zhou R F), 孔佑鑫(Kong Y X), 朱美华(Zhu M H), 张飞(Zhang F), 张小亮(Zhang X L), 陈祥树(Chen X S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2012, 28: 942—948
[45] Sebastian V, Mallada R, Coronas J, Julbe A, Terpstra R A, Dirrix R W J. J. Membr. Sci., 2010, 355: 28—35
[46] Shan L J, Shao J, Wang Z B, Yan Y S. J. Membr. Sci., 2011, 378: 319—329
[47] 袁文辉(Yuan W H), 罗仡科(Luo Y K), 胡小芳(Hu X F). 化学工程(Chemical Engineering (China)), 2006, 34: 35—37
[48] Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. Ind. Eng. Chem. Res., 2012, 51: 12073—12080
[49] Lin X, Kita H, Okamoto K. Chem. Commun., 2000, 36: 1889—1990
[50] Lin X, Kita H, Okamoto K. Ind. Eng. Chem. Res., 2001, 40: 4069—4078
[51] Shen D, Xiao W, Yang J H, Chu N B, Lu J M, Yin D H, Wang J Q. Sep. Purif. Technol., 2011, 76: 308—315
[52] Stoeger J A, Choi J, Tsapatsis M. Energy Environ. Sci., 2011, 4: 3479—3486
[53] Zou X Q, Bazin P, Zhang F, Zhu G S, Valtchev V, Mintova S. ChemPlusChem, 2012, 77: 437—444
[54] Yoo W C, Stoeger J A, Lee P S, Tsapatsis M, Stein A. Angew. Chem. Int. Ed., 2010, 49: 8699—8703
[55] Xiao W, Chen Z, Zhou L, Yang J H, Lu J M, Wang J Q. Microporous Mesoporous Mater., 2011, 142: 154—160
[56] Holmes S M, Markert C, Plaisted R J, Forrest J O, Agger J R, Anderson M W, Cundy C S, Dwyer J. Chem. Mater., 1999, 11: 3329—3332
[57] Wen Q, Di J C, Jiang L, Yu J H, Xu R R. Chem. Sci., 2013, 4: 591—595
[58] Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Payzant E A. Microporous Mesoporous Mater., 2000, 34: 241—253
[59] Choi J, Jeong H K, Snyder M A, Stoeger J A, Masel R I, Tsapatsis M. Science, 2009, 325: 590—593
[60] Heng S, Lau P P S, Yeung K L, Djafer M, Schrotter J C. J. Membr. Sci., 2004, 243: 69—78
[61] Parikh A N, Navrotsky A, Li Q H, Yee C K, Amweg M L, Corma A. Microporous Mesoporous Mater., 2004, 76: 17—22
[62] Zhao J, Luo T, Zhang X W, Lei Y, Gong K, Yan Y S. Anal. Chem., 2012, 84: 6303—6307
[63] Nomura M, Yamaguchi T, Nakao S. J. Membr. Sci., 1998, 144: 161—171
[64] Li S G, Tuan V A, Noble R D, Falconer J L. AIChE J., 2002, 48: 269—278
[65] Jia W, Murad S. Mol. Phys., 2006, 104: 3033—3043
[66] Takaba H, Koyama A, Nakao S. J. Phys. Chem. B, 2000, 104: 6353—6359
[67] Sano T, Hasegawa M, Ejiri S, Kawakami Y, Yanagishita H. Microporous Mater., 1995, 5: 179—184
[68] Matsuda H, Yanagishita H, Negishi H, Kitamoto D, Ikegami T, Haraya K, Nakane T, Idemoto Y, Koura N, Sano T. J. Membr. Sci., 2002, 210: 433—437
[69] Nomura M, Yamaguchi T, Nakao S. J. Membr. Sci., 2001, 187: 203—212

[1] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[2] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[3] Xia Zhan, Xiaofang Sun, Hengli Xu, Jiding Li. Membrane Materials for Desulfurization of Gasoline via Pervaporation [J]. Progress in Chemistry, 2019, 31(5): 752-759.
[4] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[5] Yu Zhiyuan, Ding Wande, Wang Zhining. Preparation and Application of Aquaporin Containing Biomimetic Membranes for Water Treatment and Desalination [J]. Progress in Chemistry, 2015, 27(7): 953-962.
[6] Hong Housheng Chen Longxiang You Tao Zhang Qingwen. Pervaporation Composite Membranes [J]. Progress in Chemistry, 2009, 21(10): 2229-2234.
[7] Zhan Xia|Li Jiding** Huang Junqi| Chen Cuixian. Ethanol Perm-selective Membranes by Pervaporation [J]. Progress in Chemistry, 2008, 20(09): 1416-1426.
[8] Ye Hong| Li Jiding **| Lin Yangzheng | Chen Jian| Chen Cuixian. Pervaporation Membranes for Separation of Aromatic/Aliphatic Mictures [J]. Progress in Chemistry, 2008, 20(0203): 288-299.
[9] Xu Yi1,2*,Zhang Jian1|Xu Pingzhou1,Lu Qian1,Zeng Xue1,Wen Zhiyu2. Separation and Concentration Methodologies by Solid-liquid Dual Phases Interaction on Micro-Fluidic Chip System [J]. Progress in Chemistry, 2007, 19(01): 186-192.
[10] Lijing Xuan,Jinwen Qian**,Youfang Chen,Peng Zhang. Preparation of Self-Assembled Polyelectrolyte Multilayer Membrane and Their Applications in Membrane Separation [J]. Progress in Chemistry, 2006, 18(0708): 950-956.
[11] Yang Liming,Xu Liwen,Guo Yong. Advances in Pervaporation Membranes for Separating Mixtures of Aromatic and Aliphatic Hydrocarbons [J]. Progress in Chemistry, 2001, 13(04): 303-.
[12]

Wang Xuesong

. Present Status and Development Trends of Membrane Separation [J]. Progress in Chemistry, 1994, 6(04): 321-.