中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1858-1866 DOI: 10.7536/PC130403 Previous Articles   Next Articles

• Review •

Transition Metal Oxides Inverse Opals and Their Applications in Photo(electro)chemical Processes

Zhang Hui*, Xu Xiaolong   

  1. School of Science, Beijing Jiaotong University, Beijing 100044, China
  • Received: Revised: Online: Published:
PDF ( 982 ) Cited
Export

EndNote

Ris

BibTeX

Inverse opals structures, which are also called as 3DOM materials in the catalysis science community, are the optimized photonic crystals. Since inverse opals photonic crystals have two important features, photonic band gaps and high specific surface areas, currently their applications have been extended to photo(electro)chemical processes, such as photovoltaic solar cells, DSSCs, photocatalyses, etc.The usages of inverse opals have largely improved the efficiencies of both the utilities of solar energies and the catalyses in above-metioned processes. Transition metal oxides (TMOs) are the oxide semiconductor materials with high refractive index and little light absorptions in the visible wavelength range. Therefore they are suitable candidate materials for preparing high-quality inverse opals photonic crystals. A variety of preparation methods of TMOs inverse opals, for instance, sol-gel, metal salts pyrolysis, liquid phase deposition, electrochemical deposition, electrophoresis, chemical vapor deposition (CVD), atomic layer deposition (ALD) and so on, have been developed. These synthesis processes have their unique advantages and also inherent disadvantages. No matter which technique is employed, obtaining an inverse opal material with big area, single crystal structure, and controlled layer number, would be a great challenge. This paper, from the views of preparations, properties and applications in DSSCs and photocatalyses, reviews the progress in the TMOs inverse opals.

Contents
1 Introduction
2 Characteristics of TMOs
3 Preparations of TMOs inverse opals
3.1 A brief introduction to preparation process
3.2 Liquid phase method
3.3 Vapor phase method
4 Applications of TMOs inverse opals in photo(electro)chemical processes
4.1 DSSCs
4.2 Photocatalytic degradation
4.3 Photocatalytic water splitting
5 Works of authors group in this field
6 Summary and outlook

CLC Number: 

[1] Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059—2062
[2] John S. Phys. Rev. Lett., 1987, 58(23): 2486—2489
[3] Kolle M, Zheng B, Gibbons N, Baumberg J J, Steiner U. Opt. Express, 2010, 18(5): 4356—4364
[4] Zhang Q, Li K H, Choi H W. IEEE Photonic. Tech. L., 2012, 24(18): 1642—1645
[5] Ferry J, Pleumeekers J L, Mathur A, Dentai A G, Evans P W. Photonics Spectra, 2006, 40(3): 78—82
[6] Liu G Q, Wang Z S, Liao Y B, Chen Y, Hu H H, Liu Z M. J. Opt. A: Pure Appl. Opt., 2009, 11(8): 5104—5111
[7] 叶卫民(Ye W M). 光子晶体导论(Introduction to Photonic Crystal). 北京: 科学出版社(Beijing: Scientific Press), 2010. 2—5
[8] Zhang J H, Sun Z H, Yang B. Curr. Opin. Colloid Interface Sci., 2009, 14(2): 103—114
[9] Zhang J N, Wang M Z, Ge X W, Wu M Y, Wu Q Y, Yang J J, Wang M Y, Jin Z L, Liu N N. J. Colloid Interface Sci., 2011, 353(1): 16—21
[10] Hatton B, Mishchenko L, Davis S, Sandhage K H, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(23): 10354—10359
[11] Waterhouse G I N, Metson J B, Idriss H, Sun-Waterhouse D. Chem. Mater., 2008, 20(3): 1183—1190
[12] Meng S G, Li D Z, Zheng X Z, Wang J X, Chen J, Fang J L, Shao Y, Fu X Z. J. Mater. Chem. A, 2013, 1(8): 2744—2747
[13] Qu X, Yang H K, Moon B K, Choi B C, Jeong J H, Kim K H. J. Phys. Chem. C, 2010, 114(47): 19891—19894
[14] Huang Y J, Lai C H, Wu P W, Chen L Y. Mater. Lett., 2009, 63(27): 2393—2395
[15] Yuan J, Dai H, Zhang L, Deng J, Liu Y, Zhang H, Jiang H Y, HeH. Catal. Today, 2011, 175(1): 209—215
[16] Teng Y, Fu Y, Xu L, Lin B, Wang Z, Xu Z, Jin L T, ZhangW. J. Phys. Chem. B, 2012, 116(36): 11180—11186
[17] Liu Y J, Cai Z, Leong E S P, Zhao X S, Teng J H. J. Mater. Chem., 2012, 22(15): 7609—7613
[18] Kang C, Kim E, Baek H, Hwang K, Kwak D, Kang Y, Thomas E L. J. Am. Chem. Soc., 2009, 131(22): 7538—7539
[19] Khokhar A Z, de La Rue R M, Treble B M, McComb D W, Johnson N P. Micro. Nano. Lett., 2008, 3(1): 1—6
[20] Li Y J, Xie K, Xu J, Du P P. Appl. Phys. A, 2010, 99(1): 117—123
[21] Chainani A, Yamamoto A, Matsunami M, Eguchi R, Taguchi M, Takata Y, Takagi H, Shin S, Nishino Y, Yabashi M, Tamasaku K, Ishikawa T. Phys. Rev. B, 2013, 87(4): art. no. 045108
[22] Chen D, Huang F, Cheng Y B, Caruso R A. Adv. Mater., 2009, 21(21): 2206—2210
[23] Liu Y, Jennings J R, Zakeeruddin S M, Grtzel M, Wang Q. J. Amer. Chem. Soc., 2013, 135(10): 3939—3952
[24] Park B W, Shen Q, Ogomi Y, Pandey S S, Toyoda T, Hayase S. J. Solid State Sci. Technol., 2012, 2(1): Q6—Q11
[25] Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grtzel M. Science, 2011, 334(6056): 629—634
[26] Bendall J S, Etgar L, Tan S C, Cai N, Wang P, Zakeeruddin S M, Grätzel M, Welland M E. Energy Environ. Sci., 2011, 4(8): 2903—2908
[27] Magne C, Moehl T, Urien M, Grätzel M, Pauporté T. J. Mater. Chem. A, 2013, 1(6): 2079—2088
[28] Saito M, Fujihara S. Energ. Environ. Sci., 2008, 1(2): 280—283
[29] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110(11): 6595—6663
[30] Kim S H, Oh G Y, Kim D G, Ki H C, Kim T U, Kim H J. Opt. Quant. Electron., 2013, 45(7): 755—760
[31] Schauries D, Ney V, Nayak S K, Entel P, Guda A A, Soldatov A V, Wilhelm F, Rogalev A, Kummer K, Yakhou F, Ney A. Phys. Rev. B, 2013, 87(12): art. no. 125206
[32] Wu W, Liao L, Zhang S, Zhou J, Xiao X, Ren F, Sun L L, Dai Z G, Jiang C Z. Nanoscale, 2013, 5(12): 5628—5636
[33] You H, Liu R, Liang C, Yang S, Wang F, Lu X, Ding B J. J. Mater. Chem. A, 2013, 1(12): 4097—4104
[34] Milton L. Appl. Opt., 1965, 4(8): 1032—1033
[35] Penschke C, Paier J, Sauer J. J. Phys. Chem. C, 2013, 117(10): 5274-5285
[36] Králik B, Chang E K, Louie S G. Phys. Rev. B, 1998, 57(12): 7027—7036
[37] Wang X J, Zhang L D, Zhang J P, He G, Liu M, Zhu L Q. Mater. Lett., 2008, 62(26): 4235—4237
[38] Faust B C, Hoffmann M R. Environ. Sci. Technol., 1986, 20(9): 943—948
[39] Park J, Kim D, Lee C, Kim D K. Bull. Korean Chem. Soc., 1999, 20(9): 1005—1009
[40] Sharifi P, Eckerlebe H, Marlow F. Phys. Chem. Chem. Phys., 2012, 14(29): 10324—10331
[41] Zhao J Q, Wan P, Xiang J, Tong T, Dong L, Gao Z N, Shen X Y, Tong H. Microporous Mesoporous Mater., 2011, 138(1/3): 200—206
[42] Ko Y G, Shin D H, Lee G S, Choi U S. Colloids Surf. A, 2011, 385(1/3): 188-194
[43] Huang Y J, Lai C H, Wu P W. Electrochem. Solid-State Lett., 2008, 11(12): P20—P22
[44] Zhang H, Xu X L, Li F, Jin B B, Zhao S L. Key Eng. Mater., 2013, 544: 209—212
[45] Marlow F, Sharifi P, Brinkmann R, Mendive C. Angew. Chem. Int. Ed., 2009, 48(34): 6212—6233
[46] Li S, Zhao D, Zheng J, Wan Y, Zhao X S, Zhao C C, Liu Y, Liu F, Lu L, Wang Y Q. Mater. Res. Bull., 2010, 45(9): 1069—1074
[47] Guan G. Int. J. Hydrogen Energy, 2008, 33(2): 797—801
[48] Yang Z, Yan D, Zhu K, Song Z G, Yu X, Zhou D C, Yin Z Y, Qiu J B. Mater. Lett., 2011, 65(8): 1245—1247
[49] Qu X S, Yang H K, Moon B K, Choi B C, Jeong J H. Jpn. J. Appl. Phys., 2011, 50: art. no. 1AK06
[50] Zhao J P, Li Y, Xin W H, Li X. J. Solid State Chem., 2008, 181(2): 239—244
[51] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515—6519
[52] Han D Z, Li X, Zhang L, Wang Y H, Yan Z F, Liu S M. Microporous Mesoporous Mater., 2012, 158: 1—6
[53] Li Z H, Zhao T P, Zhan X Y, Gao D S, Xiao Q Z, Lei G T. Electrochim. Acta, 2010, 55(15): 4594—4598
[54] Cui W, Liu H, Wang C, Xia Y Y. Electrochem. Commun., 2008, 10(10): 1587—1589
[55] Li S, Zheng J, Zhao Y, Liu Y. J. Porous Mater., 2008, 16(5): 553—556
[56] Li S, Zheng J, Zhao Y, Liu Y. J. Appl. Polym. Sci., 2008, 107(6): 3903—3908
[57] Lee S H, Abrams N M, Hoertz P G, Barber G D, Halaoui L I, Mallouk T E. J. Phys. Chem. B, 2008, 112(46): 14415—144121
[58] Wang A, Chen S L, Dong P, Zhou Z. Synth. Met., 2011, 161(5/6): 504—507
[59] Orilall M C, Abrams N M, Lee J, di Salvo F J, Wiesner U. J. Am. Chem. Soc., 2008, 130(28): 8882—8883
[60] Shi X J, Zhang K, Shin K, Moon J H, Lee T W, Park J H. Phys. Chem. Chem. Phys., 2013, 15: 11717—11722
[61] Chung Y W, Leu I C, Lee J H, Hon M H. Electrochim. Acta, 2009, 54(13): 3677—3682
[62] Chung Y W, Leu I C, Lee J H, Hon M H. J. Electrochem. Soc., 2009, 156(6): E91—E95
[63] Juárez B H, García P D, Golmayo D, Blanco A, López C. Adv. Mater., 2005, 17(22): 2761—2765
[64] Luo J S, Karuturi S K, Liu L J, Su L T, Tok A Y, Fan H J. Sci. Rep., 2012, 2(451): 1—6
[65] Li H R, Tang Q, Cai F Y, Hu X B, Lu H H, Yan Y, Hong W, Zhao B Y. Sol. Energy, 2012, 86(11): 3430—3437
[66] Liu W J, Zou B, Zhao J, Cui H N. Thin Solid Films, 2010, 518(17): 4923—4927
[67] Liu S. Master Dissertation of Queensland University of Technology, 2010
[68] 张辉(Zhang H), 赵晓峰(Zhao X F), 唐清(Tang Q), 李文超(Li W C). 中国粉体技术(China Powder Science and Technology), 2003, 9(1): 18—20
[69] 张辉(Zhang H), 赵晓峰(Zhao X F), 唐清(Tang Q), 李文超(Li W C). 过程工程学报(The Chinese Journal of Process Engineering), 2002, 2(6): 544—546
[70] Zhang H, Wang X D, Zhao X F, Li W C, Tang Q. Prog. Nat. Sci., 2003, 13(9): 717—720
[71] Zhang H, Duan R G, Li F, Tang Q, Li W C. Mater. Design, 2007, 28(3): 1045—1049
[72] Wang D D, Wang Y S, Zhang H, Deng L E, Zhang C X, Han X. J. Lumin., 2007, 122/123: 951—954
[73] 徐骁龙(Xu X L), 张辉(Zhang H), 刘盛楠(Liu S N), 李钒(Li F), 万金秀(Wan J X), 杨辉煌(Yang H H). 人工晶体学报(Journal of Synthetic Crystals), 2013, 42: 461—465
[74] 徐骁龙(Xu X L), 张辉(Zhang H), 刘盛楠(Liu S N), 李钒(Li F), 万金秀(Wan J X). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2013, 41: 136—140
[75] 张辉(Zhang H), 万金秀(Wan J X). ZL201210058430.X, 2012

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.