中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1942-1950 DOI: 10.7536/PC130337 Previous Articles   Next Articles

• Review •

Voltage-Responsive Systems Based on β-Cyclodextrin and Ferrocene

Peng Liao1, Feng Anchao1, Wang Hong1, Zhang Huijuan2, Yuan Jinying1*   

  1. 1. Key Lab of Organic Optoelectronic & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
  • Received: Revised: Online: Published:
PDF ( 901 ) Cited
Export

EndNote

Ris

BibTeX

Stimuli-responsive polymer is one of the hot research topics in material science. These polymers are able to respond to external stimulation, such as light, molecules, redox, pH, temperature and so on. They undergo physical or chemical changes, for example, gel-sol transition and change of volume, so they can be widely applied in controlled drug release and biosensors. Voltage stimulation can change the host-guest interaction through electron transfer reactions to add or remove electrons of host or guest molecules. This type of stimulation does not bring in extraneous redox, so it is a clean and simple method. Additionally, it can be used in biological system for it is actually one type of redox, the most common action type in biomedicine. Therefore, much attention has been attached to voltage-responsive systems. β-cyclodextrin and ferrocene can form inclusion complex by host-guest interaction when mixed together, and this interaction can also be regulated by voltage. Voltage-responsive system based on β-cyclodextrin and ferrocene is the most attractive one, because raw materials are commercially available, biologically compatible and can be modified to polymers easily. This paper investigates the recent work related to this system and summarizes four main parts, from principle, structure and characterization to applications. Moreover, the development and improvement of this system are discussed.

Contents
1 Introduction
2 Basic principle of systems based on β-cyclodextrin and ferrocene
3 Structures of systems based on β-cyclodextrin and ferrocene
4 Characterization of systems based on β-cyclodextrin and ferrocene
4.1 Cyclic voltammograms
4.2 Other methods
5 Applications of systems based on β-cyclodextrin and ferrocene
6 Conclusion and outlook

CLC Number: 

[1] Mynar J L, Goodwin A P, Cohen J A, Ma Y Z, Fleming G R, Fréchet J M J. Chem. Commun., 2007, 45: 2081—2082
[2] Liu X K, Jiang M. Angew. Chem. Int. Ed., 2006, 45: 3846—3850
[3] Yan Q, Hu J, Zhou R, Ju Y, Yin Y W, Yuan J Y. Chem. Commun., 2012, 48: 1913—1915
[4] Zhang H J, Xin Y, Yan Q, Zhou L L, Peng L, Yuan J Y. Macromol. Rapid Commun., 2012, 33: 1952—1957
[5] Zuo F, Luo C, Ding X B, Zheng Z, Cheng X, Peng Y. Supramolecular Chemistry, 2008, 20: 559—564
[6] Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27: 9602—9608
[7] Yan Q, Feng A C, Zhang H J, Yin Y W, Yuan J Y. Polym. Chem., 2013, 4: 1216—1220
[8] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132: 9268—9270
[9] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nature Communication, 2011, 2: art. no. 511
[10] Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed., 2011, 50: 4923—4927
[11] 冯岸超(Feng A C), 闫强(Yan Q), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2012, 24(10): 1995—2003
[12] Yan Q, Wang J B, Yin Y Y, Yuan J Y. Angew. Chem. Int. Ed., 2013, 52: 5070—5073
[13] Power-Billard K N, Spontak R J, Manners I. Angew. Chem. Int. Ed., 2004, 43: 1260—1264
[14] Hempenius M A, Cirmi C, Song J, Vancso G J. Macromolecules, 2009, 42: 2324—2326
[15] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830—4838
[16] Ma N, Li Y, Xu H P, Wang Z Q, Zhang X. J. Am. Chem. Soc., 2010, 132: 442—443
[17] Ritter H, Mondrzik B E, Rehahn M, Gallei M. Beilstein J. Org. Chem., 2010, 6: art. no. 60
[18] Tomatsu I, Hashidzume A, Harada A. Macromol. Rapid Commun., 2006, 27: 238—241
[19] Gillies E R, Jonsson T B, Fréchet J M J. J. Am. Chem. Soc., 2004, 126: 11936—11943
[20] Du J Z, Tang Y Q, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127: 17982—17983
[21] Rodríguez-Hernández J, Lecommandoux S. J. Am. Chem. Soc., 2005, 127: 2026—2027
[22] Yoshida R. Adv. Mater., 2010, 22: 3463—3483
[23] Lambeth R H, Ramakrishnan S, Mueller R, Poziemski J P, Miguel G S, Markoski L J, Zukoski C F, Moore J S. Langmuir, 2006, 22: 6352—6360
[24] Li Y T, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed., 2006, 45: 5792—5795
[25] He J, Tong X, Tremblay L, Zhao Y. Macromolecules, 2009, 42: 7267—7270
[26] Yan Q, Yuan J Y, Yuan W Z, Zhou M, Yin Y W, Pan C Y. Chem. Commun., 2008, 46: 6188—6190
[27] Pietsch C, Hoogenboom R, Schubert U S. Angew. Chem. Int. Ed., 2009, 48: 5653—5656
[28] Zhang H J, Yan Q, Kang Y, Zhou L L, Zhou H, Yuan J Y, Wu S Z. Polymer, 2012, 53: 3719—3725
[29] Tsitsilianis C. Soft Matter, 2010, 6: 2372—2388
[30] Kaifer A E. Acc. Chem. Res., 1999, 32: 62—71
[31] Rodríguez-Hernández J, Chécot F, Gnanou Y, Lecommandoux S. Prog. Polym. Sci., 2005, 30: 691—724
[32] Discher D E, Eisenberg A. Science, 2002, 297: 967—967
[33] Rijcken C J F, Soga O, Hennink W E, von Nostrum C F. J. Control. Release, 2007, 120: 131—148
[34] Eddington D T, David J B. Adv. Drug. Deliv., 2004, 56: 199—210
[35] Itoga K, Yamato M, Kobayashi J, Kikuchi A, Okano T. Biomaterials, 2004, 25: 2047—2053
[36] Bhmer V. Angew. Chem. Int. Ed. Engl., 1995, 34: 713—745
[37] Shinkai S, Mori S, Koreishi H, Tsubaki T, Manabe O. J. Am. Chem. Soc., 1986, 108: 2409—2416
[38] Seward E M, Hopkins R B, Sauerer W, Tam S W, Diederich F. J. Am. Chem. Soc. 1990, 112: 1783—1790
[39] Wang Y, Mendoza S, Kaifer A E. Inorg. Chem. 1998, 37: 317—320
[40] Mirzoian A, Kaifer A E. Chem. Eur. J. 1997, 3: 1052—1058
[41] Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Angew. Chem. Int. Ed., 2010, 122: 7623—7626
[42] Harada A. Acc. Chem. Res., 2001, 34: 456—464
[43] Breslow R, Dong S D. Chem. Rev., 1998, 98: 1997—2011
[44] Ji H B, Shi D P, Shao M, Li Z, Wang L F. Tetrahedron. Lett., 2005, 46: 2517—2520
[45] Komiyama M, Hirai H. J. Am. Chem. Soc., 1983, 105: 2018—2021
[46] Matsue T, Evans D H, Osa T, Kobayashi N. J. Am. Chem. Soc., 1985, 107: 3411—3417
[47] Petter R C, Salek J S, Sikorski T C, Kumaravel G, Lin F T. J. Am. Chem. Soc., 1990, 112: 3860—3868

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[11] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.