中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1906-1914 DOI: 10.7536/PC130332 Previous Articles   Next Articles

• Review •

Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid

Tang Xing, Hu Lei, Sun Yong*, Zeng Xianhai, Lin Lu*   

  1. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 794 ) Cited
Export

EndNote

Ris

BibTeX

Biomass is the only renewable resources on the earth that can be converted to liquid fuels and chemicals to replace fossil resources. Recently, the catalytic conversion of biomass to platform molecules has attracted more and more attentions from the researchers worldwide. γ-Valerolactone (GVL) is regarded as a platform molecule that has extensive application potential, similar to levulinic acid (LA). Up to now, various of catalysts and reaction systems were developed and applied to the selective reduction of biomass-derived LA to GVL, and the hydrogenation of LA can be driven by various hydrogen sources, including molecule H2, formic acid (FA), syngas and alcohols. In this review, the catalytic hydrogenation routes and recent research progress for the reduction of LA are systematically summarized in view of the diversity of hydrogen sources. The future research trends of the selective reduction of LA to GVL are suggested.

Contents
1 Introduction
2 Catalytic hydrogenation mechanism of LA to GVL
3 Production of GVL using external molecule H2 as a hydrogen source
3.1 Heterogeneous catalytic systems
3.2 Homogeneous catalytic systems
4 Production of GVL using FA as a hydrogen source
5 Production of GVL using syngas as a hydrogen source
6 Production of GVL using alcohols as a hydrogen donor
7 Conclusion and outlook

CLC Number: 

[1] 袁振宏 (Yuan Z H), 罗文 (Luo W), 吕鹏梅 (Lv P M), 王忠铭 (Wang Z M), 李惠文 (Li H W). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (10): 1687—1692
[2] Field C B, Campbell J E, Lobell D B. Trends Ecol. Evol., 2008, 23: 65—72
[3] 方向晨 (Fang X C). 化工进展 (Chemical Industry and Engineering Progress), 2011, 30 (11): 2333—2339
[4] Fischer G, Schrattenholzer L. Biomass Bioenergy, 2001, 20: 151—159
[5] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106: 4044—4098
[6] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411—2502
[7] 林鹿 (Lin L), 何北海 (He B H), 孙润仓 (Sun R C), 胡若飞 (Hu R F). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1206—1216
[8] 王泽 (Wang Z), 林伟刚 (Lin W G), 宋文立 (Song W L), 姚建中 (Yao J Z), 鲁长波 (Lu C B), 都林 (Du L). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1190—1197
[9] 余强 (Yu Q), 庄新姝 (Zhuang X S), 袁振宏 (Yuan Z H), 亓伟 (Qi W), 王琼 (Wang Q), 谭雪松 (Tan X S), 许敬亮 (Xu J L), 张宇 (Zhang Y), 徐慧娟 (Xu H J), 马隆龙 (Ma L L). 化工进展 (Chemical Industry and Engineering Progress), 2012, 31 (4): 784—791
[10] Rackemann D W, Doherty W O S. Biofuels, Bioprod. Biorefin., 2011, 5: 198—214
[11] 彭红 (Peng H), 刘玉环 (Liu Y H), 张锦胜 (Zhang J S), 阮榕生 (Ruan R S). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (12): 2237—2241
[12] 彭林才 (Peng L C), 林鹿 (Lin L), 李辉 (Li H). 化学进展 (Progress in Chemistry), 2012, 24 (5): 801—809
[13] Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S J. RSC Advances, 2012, 2: 11184—11206
[14] 胡磊 (Hu L), 孙勇 (Sun Y), 林鹿 (Lin L). 化学进展 (Progress in Chemistry), 2012, 24 (4): 483—491
[15] Horváth I T, Mehdi H, Fábos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[16] Kamm B. Angew. Chem. Int. Ed., 2007, 46: 5056—5058
[17] Oser B L, Carson S, Oser M. Food Cosmet. Toxicol., 1965, 3: 563—569
[18] Cannon G W, Casler J J Jr, Gaines W A. J. Org. Chem., 1952, 17: 1245—1251
[19] Bond J Q, Alonso D M, West R M, Dumesic J A. Langmuir, 2010, 26: 16291-16298
[20] Fegyverneki D, Orha L, Láng G, Horváth I T. Tetrahedron, 2010, 66: 1078—1081
[21] Chalid M, Heeres H J, Broekhuis A A. J. Appl. Polym. Sci., 2012, 123: 3556—3564
[22] Bruno T J, Wolk A, Naydich A. Energy Fuels, 2010, 24: 2758—2767
[23] Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Green Chem., 2010, 12: 992—999
[24] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327: 1110—1114
[25] Mosby W L. J. Am. Chem. Soc., 1952, 74: 2564—2569
[26] Mosby W L. J. Org. Chem., 1953, 18: 964—970
[27] Mosby W L. J. Org. Chem., 1954, 19: 294—304
[28] Lee C W, Urakawa R, Kimura Y. Eur. Polym. J., 1998, 34: 117—122
[29] Manzer L E. Appl. Catal. A, 2004, 272: 249—256
[30] Lange J P, Vestering J Z, Haan R J. Chem. Commun., 2007, 3488—3490
[31] Schuette H A, Thomas R W. J. Am. Chem. Soc., 1930, 52: 3010—3012
[32] Kyrides L P, Craver J K. US 2368366, 1945
[33] Christian R V Jr, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69: 1961—1963
[34] Dunlop A P, Madden J W. US 2786852, 1957
[35] Broadbent H S, Campbell G C, Bartley W J, Johnson J H. J. Org. Chem., 1959, 24: 1847—1854
[36] Yan Z P, Lin L, Liu S. Energy Fuels, 2009, 23: 3853—3858
[37] Al-Shaal M G, Wright W R H, Palkovits R. Green Chem., 2012, 14: 1260—1263
[38] Primo A, Concepcion P, Corma A. Chem. Commun., 2011, 47: 3613—3615
[39] Ortiz-Cervantes C, García J J. Inorg. Chim. Acta, 2013, 397: 124—128
[40] Raspolli-Galletti A M, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14: 688—694
[41] Raspolli-Galletti A M, Antonetti C, Ribechini E, Colombini M P, Di Nasso N D O, Bonari E. Appl. Energy, 2013, 102: 157—162
[42] Hengne A M, Rode C V. Green Chem., 2012, 14: 1064—1072
[43] Heeres H, Handana R, Chunai D, Borromeus R C, Girisuta B, Heeres H J. Green Chem., 2009, 11: 1247—1255
[44] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 4632—4634
[45] Selva M, Gottardo M, Perosa A. ACS Sustainable Chem. Eng., 2013, 1: 180—189
[46] Alonso D M, Wettstein S G, Bond J Q, Root T W, Dumesic J A. ChemSusChem, 2011, 4: 1078—1081
[47] Wettstein S G, Bond J Q, Alonso D M, Pham H N, Datye A K, Dumesic J A. Appl. Catal. B, 2012, 117/118: 321—329
[48] Azadi P, Carrasquillo-Flores R, Pagán-Torres Y J, Gürbüz E I, Farnood R, Dumesic J A. Green Chem., 2012, 14: 1573—1576
[49] Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. J. Ind. Eng. Chem., 2011, 17: 287—292
[50] Braca G, Galletti A M R, Sbrana G. J. Organomet. Chem., 1991, 417: 41—49
[51] Starodubtseva E V, Turova O V, Vinogradov M G, Gorshkova L S, Ferapontov V A. Russ. Chem. Bull., 2005, 54: 2374—2378
[52] Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T. Top. Catal., 2008, 48: 49—54
[53] Delhomme C, Schaper L A, Zhang-Pree M, Raudaschl-Sieber G, Weuster-Botz D, Kühn F E. J. Organomet. Chem., 2013, 724: 297—299
[54] Tukacs J M, Király D, Strádi A, Novodárszki G, Eke Z, Dibó G, Kégl T, Mika L T. Green Chem., 2012, 14: 2057—2065
[55] Chalid M, Broekhuis A A, Heeres H J. J. Mol. Catal. A: Chem., 2011, 341: 14—21
[56] Li W, Xie J H, Lin H, Zhou Q L. Green Chem., 2012, 14: 2388—2390
[57] Laurenczy G, Grasemann M. Energy Environ. Sci., 2012, 5: 8171—8181
[58] Johnson T C, Morris D J, Wills M. Chem. Soc. Rev., 2010, 39: 81—88
[59] Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. J. Am. Chem. Soc., 2011, 133: 11822—11825
[60] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84: 339—349
[61] Weingarten R, Cho J, Xing R, Conner W C, Huber G W. ChemSusChem, 2012, 5: 1280—1290
[62] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48: 6529—6532
[63] Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2011, 50: 7815—7819
[64] Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q X. ChemSusChem, 2010, 3: 1172—1175
[65] Stratakis M, Garcia H. Chem. Rev., 2012, 112: 4469—4506
[66] Zhang Y, Cui X, Shi F, Deng Y. Chem. Rev., 2012, 112: 2467—2505
[67] Bi Q Y, Du X L, Liu Y M, Cao Y, He H Y, Fan K N. J. Am. Chem. Soc., 2012, 134: 8926—8933
[68] Du X L, Bi Q Y, Liu Y M, Cao Y, Fan K N. ChemSusChem, 2011, 4: 1838—1843
[69] Yu L, Du X L, Yuan J, Liu Y M, Cao Y, He H Y, Fan K N. ChemSusChem, 2013, 6: 42—46
[70] Kopetzki D, Antonietti M. Green Chem., 2010, 12: 656—660
[71] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina C D. Angew. Chem. Int. Ed., 2007, 46: 4434—4440
[72] Yung M M, Jablonski W S, Magrini-Bair K A. Energy Fuels, 2009, 23: 1874—1887
[73] Ruiz J R, Jiménez-Sanchidrián C. Cur. Org. Chem., 2007, 11: 1113—1125
[74] Graauw C F D, Peters J A, Bekkum H V, Huskens J. Synthesis, 1994, 10: 1007—1017
[75] Chia M, Dumesic J A. Chem. Commun., 2011, 47: 12233—12235
[76] Tanabe K, Yamaguchi T. Catal. Today, 1994, 20: 185—198
[77] Liu S H, Jaenicke S, Chuah G K. J. Catal., 2002, 206: 321—330
[78] Zhu Y. J. Catal., 2003, 218: 396—404
[79] Zhu Y, Liu S, Jaenicke S, Chuah G. Catal. Today, 2004, 97: 249—255
[80] Miambres J F, Aramendía M A, Marinas A, Marinas J M, Urbano F J. J. Mol. Catal. A: Chem., 2011, 338: 121—129

[1] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[5] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[6] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[7] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[8] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[9] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.
[10] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[11] Guo Xiao, Yan Yani, Zhang Yahong, Tang Yi. Heterogeneously Catalytic Transformation of Biomass-Derived Sugars [J]. Progress in Chemistry, 2013, 25(11): 1915-1927.
[12] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[13] Chen Hongzhang, Peng Xiaowei. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources [J]. Progress in Chemistry, 2012, (9): 1857-1864.
[14] Xu Yingying, Li Zhao, Maxim Borzov, Nie Wanli. Application of Frustrated Lewis Pairs in the Activation of Small Molecules [J]. Progress in Chemistry, 2012, 24(08): 1526-1532.
[15] Peng Lincai, Lin Lu, Li Hui. Conversion of Biomass into Levulinate Esters as Novel Energy Chemicals [J]. Progress in Chemistry, 2012, 24(05): 801-809.