中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1876-1887 DOI: 10.7536/PC130317 Previous Articles   Next Articles

• Review •

Advances in the Synthesis of Vinyl Chloride Compounds

Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping*   

  1. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
  • Received: Revised: Online: Published:
PDF ( 837 ) Cited
Export

EndNote

Ris

BibTeX

Vinyl chloride is an important functional group in many biologically and pharmaceutically active compounds, some vinyl chloride derivatives have been employed as organic materials, including polymers, and also are employed as the building block in organic synthesis. The construction of vinyl chloride is widely studied, new method and reagent are continuing to emerge in recently years. In this paper, the recent progress in the synthesis of vinyl chloride is reviewed according to the different reaction types, and its application in the total synthesis of marine natural product malyngamides is covered.

Contents
1 Introduction
2 Synthesis of vinyl chloride by Wittig reaction
3 Cr,Pd,Ti,In,Mg,and Cu-mediated reaction to synthesize vinyl chloride
3.1 Organic Cr-mediated reaction
3.2 Pd-mediated reaction
3.3 Ti-mediated reaction
3.4 In-mediated reaction
3.5 MgCl2-mediated reaction
3.6 Cu-mediated reaction
4 Using other methods to synthesize vinyl chloride
5 Studied on the synthesis of vinyl chloride and applied in marine natural product malyngamides
5.1 Synthesis of vinyl chloride by Wittig reaction in malyngamides M, O, P, Q, R
5.2 Synthesis of vinyl chloride by the reaction of n-Bu4NI with 1,2-dichloroethane in malyngamides K, L, 5-epi-C
6 Conclusion

CLC Number: 

[1] Kahnberg P, Sterner O. Tetrahedron, 2001, 57: 7181—7184
[2] Kahnberg P, Lee C W, Grubbs R H, Sterner O. Tetrahedron, 2002, 58: 5203—5208
[3] Graf K M, Tabor M G, Brown M L, Paige M. Org. Lett., 2009, 11: 5382—5385
[4] Smith A B, Razler T M, Meis R M, Pettit G R. J. Org. Chem., 2008, 73: 1201—1208
[5] Choi Y, Li L, Grill S, Gullen E, Lee C S, Gumina, G, Tsujii E, Cheng Y C, Chu C K. J. Med. Chem., 2000, 43: 5238—5246
[6] Gallimore W A, Scheuer P J. J. Nat. Prod., 2000, 63: 1422—1424
[7] Milligan K E, Márquez B, Williamson R T, Davies-Coleman M, Gerwick W H. J. Nat. Prod., 2000, 63: 965—968
[8] Gaynor S T. Macromolecular, 2012, 45: 2200—2208
[9] Li G, Wang H, Zheng H, Bai R. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 1348—1356
[10] Whipp C J, Turiso F G L. Tetrahedron Lett., 2008, 49: 5508—5510
[11] Esmieu W R, Worden S M, Catterick D, Wilson C, Hayes C J. J. Org. Lett., 2008, 10: 3045—3048
[12] Kao H L, Lee C F. Org. Lett., 2011, 13: 5204—5207
[13] Hu T, Shen M, Chen Q, Li C. Org. Lett., 2006, 8: 2647—2650
[14] Blackburn L, Pei C, Taylor R J K. Synlett, 2002, 215—218
[15] Shuto S, Niizuma S, Matsuda A. J. Org. Chem., 1998, 63: 4489—4493
[16] Barrett A G M, Hamprecht D, Ohkubo M. J. Org. Chem., 1997, 62: 9376—9378
[17] MacCoss R N, Balskus E P, Ley S V. Tetrahedron Lett., 2003, 44: 7779—7781
[18] Takai K, Kurcda T, Nakatsukasa S, Oshima K, Nozaki H. Tetrahedron Lett., 1985, 26: 5585—5588
[19] Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc., 1986, 108: 7408—7410
[20] Takai K, Kokumai R, Nobunaka T. Chem. Commun., 2001, 1128—1129
[21] Concellón J M, Rodríguez-Solla H, Méjica C. Tetrahedron Lett., 2004, 45: 2977—2979
[22] Concellón J M, Bernad P L, Méjica C. Tetrahedron Lett., 2006, 46: 569—571
[23] Bckvall J E, Nilsson Y I M, Andersson P G, Gatti R G P, Wu J. Tetrahedron Lett., 1994, 35: 5713—5716
[24] Nilsson Y I M, Gatti R G P, Andersson P G, Bckvall J E. Tetrahedron, 1996, 52: 7511—7523
[25] Holzapfel C W, Marais L. Tetrahedron Lett., 1998, 39: 2179—2182
[26] Jiang H, Ma S, Zhu G, Lu X. Tetrahedron, 1996, 52: 10945—10954
[27] Keck D, Vanderheiden S, Brse S. Eur. J. Org. Chem., 2006, 4916—4923
[28] Steinhagen H, Corey E J. Org. Lett., 1999, 1: 823—824
[29] Métay E, Hu Q, Negishi E I. Org. Lett., 2006, 8: 5773—5776
[30] Kim S, Kim S, Lee T, Ko H, Kim D. Org. Lett., 2004, 6: 3601—3604
[31] Takeda T, Sasaki R, Fujiwara T. J. Org. Chem., 1998, 63: 7286—7288
[32] Takeda T, Endo Y, Reddy A C S, Sasak R, Fujiwara T. Tetrahedron, 1999, 55: 2475—2486
[33] Takeda T, Nozaki N, Fujiwara T. Tetrahedron Lett., 1998, 39: 3533—3536
[34] Wei H X, Gao J J, Li G. Tetrahedron Lett., 2001, 42: 9119—9122
[35] Tsai C C, Chien C C, Chang Y C, Lin H C, Yan T H. J. Org. Chem., 2005, 70: 5745—5747
[36] Cook G R, Hayashi R. Org. Lett., 2006, 8: 1045—1048
[37] Tsuji H, Fujimoto T, Endo K, Nakamura M, Nakamura E. Org. Lett., 2008, 10: 1219—1221
[38] Wang Y, Lam H W. J. Org. Chem., 2009, 74: 1353—1355
[39] Ma S, Zhang J, Cai Y, Lu L. J. Am. Chem. Soc., 2003, 125: 13954—13955
[40] Bejot R, Tisserand S, Reddy L M, Barma D K, Baati R, Falck J R, Mioskowski C. Angew. Chem. Int. Ed., 2005, 44: 2008—2011
[41] Baati R, Barma D, Krishna U M, Mioskowski C, Falck J R. Tetrahedron Lett., 2002, 43: 959—961
[42] Baati R, Barma D K, Falck J R, Mioskowski C. J. Am. Chem. Soc., 2001, 123: 9196—9197
[43] Ram R N, Meher N K. Org. Lett., 2003, 5: 145—147
[44] Ram R N, Manoj T P. Org. Lett., 2008, 10: 2243—2246
[45] Barluenga J, Baragaa B, Concellón J M. J. Org. Chem., 1999, 64: 2843—2846
[46] Kataoka T, Kinoshita H, Kinoshika S, Iwamura T, Watanabe S. Angew. Chem. Int. Ed., 2000, 39: 2358—2360
[47] Moreno-Dorado F J, Guerra F M, Manzano F L, Aladro F J, Jorge Z D, Massanet G M. Tetrahedron Lett., 2003, 44: 6691—6693
[48] Lebrun M E, Marquand P L, Berthelette C. J. Org. Chem., 2006, 71: 2009—2013
[49] Lemay A B, Vulic K S, Ogilvie W W. J. Org. Chem., 2006, 71: 3615—3618
[50] Banwell M G, Phillis A T, Willis A C. Org. Lett., 2006, 8: 5341—5344
[51] Chen J, Shi Z F, Zhou L, Xie A L, Cao X P. Tetrahedron Lett., 2010, 66: 3499—3507
[52] Chen J, Fu X G, Zhou L, Zhang J T, Qi X L. J. Org. Chem., 2009, 74: 4149—4157
[53] Zhang J T, Qi X L, Chen J, Li B S, Zhou Y B. J. Org. Chem., 2011, 76: 3946—3959

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[3] Xiaoxiao Wu, Kaiqing Ma. Total Synthesis of Stemona Alkaloids [J]. Progress in Chemistry, 2020, 32(6): 752-760.
[4] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[5] Miao Qian, Yang Daiyue. From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook [J]. Progress in Chemistry, 2020, 32(11): 1835-1845.
[6] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[7] Rugang Fu, Zheng Li, Lei Gao. Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source [J]. Progress in Chemistry, 2019, 31(9): 1303-1313.
[8] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[9] Xiaoyu Liu, Tao Xiao, Yong Qin. Total Synthesis of the Akuammiline Alkaloid Strictamine [J]. Progress in Chemistry, 2018, 30(5): 578-585.
[10] Tingting Huang, Zihua Zhou, Qi Liu, Xiaozheng Wang, Wenli Guo, Shuangjun Lin*. Biosynthetic Mechanisms of Alkaloids from Actinomycetes [J]. Progress in Chemistry, 2018, 30(5): 692-702.
[11] Zou Huaibo, Wang Huahua, Mei Guangquan, Liu Haiyang, Chang Chi-Kwong. Catalytic Application of Iron Corrole Complexes in Organic Synthesis [J]. Progress in Chemistry, 2015, 27(6): 666-674.
[12] Xu Yisong, Zhang Fengxiang, Li Jiayun, Bai Ying, Xiao Wenjun, Peng Jiajian. Preparation and Applications in Organic Reactions of Polyethylene Glycol Functionalized Ionic Liquids [J]. Progress in Chemistry, 2015, 27(10): 1400-1412.
[13] Shen Haimin, Wu Hongke, Shi Hongxin, Ji Hongbing, Yu Wubin. Application of the Heterogeneous Cyclodextrins in Aqueous Phase Organic Synthesis [J]. Progress in Chemistry, 2015, 27(1): 70-78.
[14] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.
[15] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.