中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1763-1770 DOI: 10.7536/PC130203 Previous Articles   Next Articles

Metal-Organic Frameworks Used as Chromatographic Stationary Phases

Xie Shengming, Yuan Liming   

  1. Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
  • Received: Revised: Online: Published:
PDF ( 974 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) is relatively a new class of multi-functional materials with fascinating structures and unusual properties, such as porosity, high surface areas, as well as excellent chemical and thermal stability. MOFs have attracted a great deal of attention in the past decade. Comparing with conventional inorganic porous materials, an important feature of MOFs is that their framework structures can be finely controlled. Therefore, MOFs with specific function and adjustable pore size can be synthesized by the choice of metal ions or clusters and organic building blocks with specific functional groups and shape. Recently, a large number of MOFs have been synthesized and shown potential applications in many areas, such as gas storage, catalysis and separation. This review summarizes the research progress on application of MOFs as stationary phases in liquid chromatography and gas chromatography. Finally, a prospect of the application of this new class of multi-functional materials in chromatography is given.

Contents
1 Introduction
2 Metal-organic frameworks used as chromatographic stationary phases
2.1 Metal-organic frameworks used as stationary phases in liquid chromatography
2.2 Metal-organic frameworks used as stationary phases in gas chromatography
3 Outlook

CLC Number: 

[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111: 5962—5964
[2] Hoskins B F, Robson R. J. Am. Chem. Soc., 1990, 112: 1546—1554
[3] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477—1504
[4] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450—1459
[5] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353—1379
[6] Shimomura S, Bureekaew S, Kitagawa S. Struct. Bond., 2009, 132: 51—86
[7] Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J, Zhou H C. Coord. Chem. Rev., 2009, 253: 3042—3066
[8] Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48: 7502—7513
[9] Corma A, García H, Llabrés i Xamena F X. Chem. Rev., 2010, 110: 4606—4655
[10] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23: 249—267
[11] Cychosz K A, Ahmad R, Matzger A J. Chem. Sci., 2010, 1: 293—302
[12] Alaerts L, Kirschhock C E A, Maes M, van der Veen M A, Finsy V, Depla A, Martens J A, Baron G V, Jacobs P A, Denayer J E M, de Vos D E. Angew. Chem. Int. Ed., 2007, 46: 4293—4297
[13] Alaerts L, Maes M, Giebeler L, Jacobs P A, Martens J A, Denayer J F M, Kirschhock C E A, de Vos D E. J. Am. Chem. Soc., 2008, 130: 14170—14178
[14] Alaerts L, Maes M, Jacobs P A, Denayer J F M, de Vos D E. Phys. Chem. Chem. Phys., 2008, 10 : 2979—2985
[15] Alaerts L, Maes M, van der Veen M A, Jacobs P A, de Vos D E. Phys. Chem. Chem. Phys., 2009, 11: 2903—2911
[16] Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock C E A, Denayer J F M, de Vos D E. J. Am. Chem. Soc., 2010, 132: 15277—15285
[17] Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels B F, Denayer J F M, De Vos D E. Eur. J. Inorg. Chem., 2010, 3735—3738
[18] Yang C X, Yan X P. Anal. Chem., 2011, 83: 7144—7150
[19] Fu Y Y, Yang C X, Yan X P. Langmuir, 2012, 28: 6794—6802
[20] Yang C X, Liu S S, Wang H F, Wang S W, Yan X P. Analyst, 2012, 137: 133—139
[21] Ahmad R, Wong-Foy A G, Matzger A J. Langmuir, 2009, 25: 11977—11979
[22] Jiang H L, Tatsu Y, Lu Z H, Xu Q. J. Am. Chem. Soc., 2010, 132: 5586—5587
[23] Yang C X, Chen Y J, Wang H F, Yan X P. Chem. Eur. J., 2011, 17: 11734—11737
[24] Centrone A, Santiso S S, Hatton T A. Small, 2011, 7: 2356—2364
[25] Liu S S, Yang C X, Wang S W, Yan X P. Analyst, 2012, 137: 816—818
[26] Fu Y Y, Yang C X, Yan X P. J. Chromatogr. A, 2013, 1274: 137—144
[27] Nuzhdin A L, Dybtsev D N, Bryliakov K P, Talsi E P, Fedin V P. J. Am. Chem. Soc., 2007, 129: 12958—12959
[28] Padmanaban M, Müller P, Lieder C, Gedrich K, Grünker R, Bon V, Senkovska I, Baumgrtner S, Opelt S, Paasch S, Brunner E, Glorius F, Klemm E, Kaskel S. Chem. Commun., 2011, 47: 12089—12091
[29] Tanaka K, Muraoka T, Hirayama D, Ohnish A. Chem. Commun., 2012, 48: 8577—8579
[30] Chen B L, Liang C D, Yang J, Contreras D S, Clancy Y L, Lobkovsky E B, Yaghi O M, Dai S. Angew. Chem. Int. Ed., 2006, 45: 1390—1393
[31] Yoon J W, Jhung S H, Hwang Y K, Humphrey S M, Wood P T, Chang J S. Adv. Mater., 2007, 19: 1830—1834
[32] Finsy V, Verelst H, Alaerts L, de Vos D E, Jacobs P A, Baron G V, Denayer J F M. J. Am. Chem. Soc., 2008, 130: 7110—7118
[33] Finsy V, Calero S, García-Pérez E, Merkling P J, Vedts G, de Vos D E, Baron G V, Denayer J F M. Phys. Chem. Chem. Phys., 2009, 11: 3515—3521
[34] Remy T, Ma L, Maes M, de Vos D E, Baron G V, Denayer J F M. Ind. Eng. Chem. Res., 2012, 51: 14824—14833
[35] Gu Z Y, Jiang D Q, Wang H F, Cui X Y, Yan X P. J. Phys. Chem. C, 2010, 114: 311—316
[36] Luebbers M T, Wu T J, Shen L J, Masel R I. Langmuir, 2010, 26: 15625—15633
[37] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45: 734—745
[38] Gu Z Y, Yan X P. Angew. Chem. Int. Ed., 2010, 49: 1477—1480
[39] Chang N, Gu Z Y, Yan X P. J. Am. Chem. Soc., 2010, 132: 13645—13647
[40] Chang N, Yan X P. J. Chromatogr. A, 2012, 1257: 116—124
[41] Gu Z Y, Jiang J Q, Yan X P. Anal. Chem., 2011, 83: 5093—5100
[42] Fan L, Yan X P. Talanta, 2012, 99: 944—950
[43] Chang N, Gu Z Y, Wang H F, Yan X P. Anal. Chem., 2011, 83: 7094—7101
[44] Xie S M, Zhang Z J, Wang Z Y, Yuan L M. J. Am. Chem. Soc., 2011, 133: 11892—11895
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[6] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[7] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[10] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[13] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[14] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[15] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.