中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1915-1927 DOI: 10.7536/PC130152 Previous Articles   Next Articles

• Review •

Heterogeneously Catalytic Transformation of Biomass-Derived Sugars

Guo Xiao, Yan Yani, Zhang Yahong*, Tang Yi   

  1. Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 1141 ) Cited
Export

EndNote

Ris

BibTeX

Biomass carbohydrates, the most abundant renewable resources available, currently are viewed as the only alternative carbon sources for the construction of chemicals and materials for human survival in the future. Biomass-derived sugars ——cellulose and hemicellulose can be transformed into a variety of platform chemicals, of which furfural from dehydration of pentoses, hydroxymethyl furfural (HMF), from dehydration of hexoses as well as succedent levulinic acid (LA) and γ-valerolactone (GVL) are attracting the most attention. Contrast to conventional homogeneous catalysis, heterogeneous catalysts have advantages of facile separation from products and recycling, permitting higher reaction temperature and shorter reaction time and so on, which accounts for their tremendous potential in fine chemicals, biofuels manufacture and large scale industrial application, and can be expected to be the groundbreaking solution of environment, energy and resource utilization. Herein, the paper starting with biomass-derived sugars, summarized the research development of heterogeneous catalysis on hydrolysis of sugars and their transformation to various platform chemicals containing furural, HMF, LA as well as GVL respectively. Finally, a prospect of the heterogeneous catalysis on the biomass transformation is envisaged which is expected to make a brief guidance for the readers.

Contents
1 Introduction
2 Heterogeneously catalytic hydrolysis of biomass-derived sugars
3 The research development of heterogeneously catalytic dehydration
3.1 Heterogeneous catalysis of sugars' transformation into furfural
3.2 Heterogeneous catalysis of sugars' transformation into HMF
3.3 Heterogeneous catalysis of sugars' transformation into LA
3.4 Heterogeneous catalysis of sugars' transformation into GVL
4 Conclusion and outlook

CLC Number: 

[1] Avelino C, Sara I, Alexandra V. Chem. Rev., 2007, 107: 2411—2502
[2] Huber G W, Sara I, Avelino C. Chem. Rev., 2006, 106: 4044—4098
[3] Cheng S, Zhu S. BioResources, 2009, 4: 456—457
[4] Carvalheiro F, Duarte L C, Girio F M. J. Sci. Ind. Res., 2008, 67: 849—864
[5] Roper H. Starch-Starke, 2002, 54: 89—94
[6] Juan A M, Jose I, Alicia G. Energy Environ. Sci., 2012, 5: 7393—7420
[7] David M A, Jesse Q B, James A D. Green Chem., 2010, 12: 1493—1513
[8] Maria J C, Avelino C, Sara I. Chem. Rev., 2011, 111: 1072—1133
[9] Maria J C, Avelino C, Sara I. Green Chem., 2011, 13: 520—540
[10] Yomaira J P, Tianfu W, Jean M R G, Brent H S, James A D. ACS Catal., 2012, 2: 930—934
[11] Chao W, Litang F, Xin L T, Qi W Y, Wen Q Z. Carbohydr. Res., 2012, 347: 182—185
[12] Juben N C, Yuriy R L, James A D. Green Chem., 2007, 9: 342—350
[13] Avelino C, Hermenegildo G. Chem. Rev., 2003, 103: 4307—4365
[14] Zhang H Y P, Lynd L R. Biotechnol. Bioeng., 2004, 88: 797—824
[15] Gusakov V, Baez M, Sinitsyn A P. Biotechnol. Bioeng., 2007, 97: 1028—1038
[16] Chia H S, Chung M H, Hsieh H J, Chang Y K, Ding J C, Wu H M. J. Taiwan Inst. Chem. Eng., 2012, 43: 573—577
[17] Carlini C, Patrono P, Sbrana G. Appl. Catal. A: Gen., 2004, 275: 111—120
[18] Li C Z, Zheng M Y, Wang A Q, Zhang T. Energy Environ. Sci., 2012, 5: 6383—6390
[19] Hirokazu K, Tasuku K, Samar K G, Kenji H, Atsushi F. Appl. Catal. A: Gen., 2011, 409/410: 13—20
[20] Stijn V V, Jan G, Pierre A J, Bert F S. ChemCatChem, 2011, 3: 82—94
[21] Roberto R, Ferdi S. ChemSusChem, 2009, 2: 1096—1107
[22] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10: 177—182
[23] Rinaldi R, Meine N, Stein J, Palkovits R, Schuth F. ChemSusChem, 2010, 3: 266—276
[24] Hendriks A, Zeeman G. Bioresour. Technol., 2009, 100: 10—18
[25] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047—8050
[26] Qi X H, Masaru W, Taku M A, Richard L S. Cellulose, 2011, 18: 1327—1333
[27] Guo H X, Qi X H, Li L Y, Richard L S. Bioresour. Technol., 2012, 116: 355—359
[28] Ayumu O. J. Jpn. Pet. Inst., 2012, 55: 73—86
[29] Zhen Z Y, Jin D, Tao P, Qing X G, Fu Y. Green Chem., 2012, 14: 2986—2989
[30] Nakajima K, Hara M. ACS Catal., 2012, 2: 1296—1304
[31] Ormsby R, Kastner J R, Miller J. Catal. Today, 2012, 190: 89—97
[32] Lai D M, Deng L, Liao J J B, Guo Q X, Fu Y. ChemSusChem, 2011, 4: 55—58
[33] Lai D M, Deng L, Guo Q X, Fu Y. Energy Environ. Sci., 2011, 4: 3552—3557
[34] Zeitsch K J. Sugar Ser., 2000, 13: 34—69
[35] Wachiraporn D, Panatpong B, Navadol L, Motonobu G, Artiwan S. Ind. Eng. Chem. Res., 2011, 50: 7903—7910
[36] Lange J P, Evert H, Jeroen B, Richard P. ChemSusChem, 2012, 5: 150—166
[37] Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P. Ind. Crops Prod., 1998, 7: 95—99
[38] Dias A S, Lima S, Brandao P, Pillinger M, Rocha J, Valente A A. Catal. Lett., 2006, 108: 179—186
[39] Telleria I A, Requies J, Guemez M B, Arias P L. Appl. Catal. B: Environ., 2012, 115/116: 169—178
[40] Dias A S, Lima S, Carriazo D, Rives V, Pillinger M, Valente A A. J. Catal., 2006, 244: 230—237
[41] Lima S, Pillinger M, Valente A A. Catal. Commun., 2008, 9: 2144—2148
[42] Lima S, Fernandes A, Ribeiro F, Valente A A. Catal. Lett., 2010, 135: 41—47
[43] Carlo P, Aldo B. Microporous Mesoporous Mater., 2011, 144: 28—39
[44] Moreau C, Belgacem M N, Gandini A. Top. Catal., 2004, 27: 11—30
[45] Eurick S K, Mahdi M A, Nathan S M. Energy Fuels, 2012, 26: 1298—1304
[46] Arghya D, Astam K P, Saikat D, Basudeb S, Asim B. J. Mater. Chem., 2012, 22: 14094— 14100
[47] Rosatella A A, Simeonov S P, Alfonso C A M. Green Chem., 2011, 13: 754—793
[48] Carlini C, Patrono P, Galletti A M R, Sbrana G. Appl. Catal. A, 2004, 275: 111—118
[49] Qi X, Watanabe M, Aida T M, Smith R L Jr, Catal. Commun., 2009, 10: 1771—1775
[50] Leshkow Y R, Chheda J N, Dumesic J A. Science, 2006, 312: 1933—1937
[51] Chheda J N, Leshkow Y R, Dumesic J A. Green Chem., 2007, 9: 342—350
[52] Zhao Q, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90: 2289—2293
[53] Guo X C, Cao Q, Jiang Y J, Wang X Y, Mu X D. Carbohydr. Res., 2012, 351: 35—41
[54] Qi X, Watanabe M, Aida T M, Smith R L. Green Chem., 2009, 11: 1327—1331
[55] Qi X H, Guo H X, Li L Y. Ind. Eng. Chem. Res., 2011, 50: 7985—7989
[56] Lei H, Yong S, Lu L. Ind. Eng. Chem. Res., 2012, 51: 1099—1104
[57] Bicker M, Kaiser D, Ott L, Vogel H. J. Supercrit. Fluids, 2005, 36: 118—126
[58] Asghari F S, Yoshida H. Carbohydr. Res., 2006, 341: 2379—2387
[59] Kovalevsky A Y, Hanson L, Fisher S Z, Mustyakimov M, Mason S A, Forsyth V T, Blakeley M P, Keen D A, Wagner T, Carrell H L, Katz A K, Glusker J P, Langan P. Structure, 2010, 18: 688—699
[60] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem. Commun., 2009, 41: 6276—6278
[61] Roman-Leshkov Y, Moliner M, Labinger J A, Davis M E. Angew. Chem. Int. Ed., 2010, 49: 8954 —8957
[62] Eranda N, Roman-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1: 408—410
[63] Moliner M, Roman-Leshkov Y, Davis M E. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 6164—6168
[64] Corma A, Domine M E, Nemeth L, Valencia S. Nature, 2001, 412: 423—425
[65] Mascal M, Nikitin E B. Green Chem., 2010, 12: 370—373
[66] Khaled W O, Jessica E B, Francesca M K. Green Chem., 2012, 14: 1480—1487
[67] Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs P A, Sels B F. Energy Environ. Sci., 2011, 4: 3601—3610
[68] Rackemann D W, William O S D. Biofuels Bioprod. Bioref., 2011, 5: 198—214
[69] Schraufnagel R A, Rase H F. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14: 40—44
[70] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84: 339—349
[71] Wang P, Zhan S, Yu H B. Adv. Mater. Res., 2009, 96: 183—187
[72] Weingarten R, Conner W C, Huber G W. Energy Environ. Sci., 2012, 5: 7559—7574
[73] Jessica H, Kyle C P, Brenton D B, Brett L L. Tetrahedron Lett., 2010, 17: 2356—2358
[74] Nazlina Y, Saidina N A A, Mohd A. Bioresour. Technol., 2012, 116: 58—65
[75] Potvin J, Sorlien E, Hegner J, DeBoef B, Lucht B. Tetrahedron Lett., 2011, 52: 5891—5893
[76] Zeng W, Cheng D G, Zhang H H, Chen F Q, Zhan X L. Reac. Kinet. Mech. Cat., 2010, 100: 377—384
[77] Gurbuz E I, Wettstein S G, Dumesic J A. ChemSusChem, 2012, 5: 383—387
[78] Wettstein S G, Alonso D M, Chong Y X, Dumesic J A. Energy Environ. Sci., 2012, 5: 8199—8203
[79] Son P A, Nishimura S, Ebitani K. Reac. Kinet. Mech. Cat., 2012, 106(1): 185—192
[80] Girisuta B. Doctoral Dissertation of University of Groningen, 2007
[81] Jow J, Rorrer G L, Hawley M C, Lamport D T A. Biomass, 1987, 14: 185—194
[82] Redmon B C. US 2738367, 1956
[83] Lourvanij K. Doctoral Dissertation of Oregon State University, 1995
[84] Hegner J, Pereira K C, Deboef B, Lucht B L. Tetrahedron Lett., 2010, 51: 2356—2358
[85] Horvath I T, Mehdi H, Fabos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[86] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48: 6529—6532
[87] Girisuta B, Janssen L, Heeres H J. Ind. Eng. Chem. Res., 2007, 46: 1696—1708
[88] Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. J. Ind. Eng. Chem., 2011, 17: 287—292
[89] Chalid M, Broekhuis A A, Heeres H J. J. Mol. Catal. A: Chem., 2011, 341: 14—21
[90] Mohammad G A, William R H W, Regina P. Green Chem., 2012, 14: 1260—1263
[91] Galletti A M R, Antonetti C, Ribechini E, Maria Colombini M P, Nassi N D N, Bonari E. Applied Energy, 2013, 102: 157—162
[92] Hengne A M, Rode C V. Green Chem., 2012, 14: 1064—1072
[93] Chia M, Dumesic J A. Chem. Commun., 2011, 47: 12233—12235
[94] Wright W R H, Palkovits R. ChemSusChem, 2012, 5: 1657—1667
[95] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44: 4632 —4634
[96] Manzer L E, Hutchenson K W. US 2004254384, 2004
[97] Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Green Chem., 2009, 11: 1247—1255
[98] Horvath I T, Mehdi H, Fabos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[99] Hengne A M, Chandrashekhar V R. Green Chem., 2012, 14: 1064—1072
[100] Manzer L E. Appl. Catal. A, 2004, 272: 249—256
[101] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44: 4632—4634
[102] Zhi Y P, Lin L, Liu S. Energy Fuels, 2009, 23: 3853—3858
[103] Wettstein S G, Bond J Q, Alonso D M, Pham A N, Datye A K, Dumesic J A. Appl. Catal. B: Environ., 2012, 117/118: 321—329
[104] Galletti A M R, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14: 688—694

[1] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[2] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[3] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[4] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[5] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[6] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[7] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[8] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[9] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[10] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[11] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[12] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[13] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.
[14] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[15] Zhang Lingfeng, Hu Zhongpan, Gao Zemin, Liu Yalu, Yuan Zhongyong. Preparation and Catalytic Application of Ordered Mesoporous Carbon-Based Metal Composite Materials [J]. Progress in Chemistry, 2015, 27(8): 1042-1056.