中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1898-1905 DOI: 10.7536/PC130149 Previous Articles   Next Articles

• Review •

Palladium- and Copper-Catalyzed Cross Coupling Reaction of Aliphatic Alcohols and Aryl Halides

Jin Xiaoping1*, Zhang Li3, Gao Haoqi2, Fang Jianghua2, Li Ruifeng3, Fang Yewen2,4*   

  1. 1. Department of Basic Education, Zhejiang Pharmaceutical College, Ningbo 315100, China;
    2. School of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China;
    3. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024;
    4. Ningbo Current Tech Fine Chemical Co. Ltd., Ningbo 315204, China
  • Received: Revised: Online: Published:
PDF ( 1687 ) Cited
Export

EndNote

Ris

BibTeX

Alkyl aryl ethers are present in many naturally occurring and medicinally relevant compounds. Palladium- and copper-catalyzed C—O bond formation reactions have become effective strategies for their preparation. Recent developments in palladium- and copper-catalyzed arylations of aliphatic alcohols are summarized in this review. Palladium-catalyzed C—O cross coupling of various aliphatic alcohols with aryl halides could be efficiently realized in the presence of di-tert-buthyl biarylphosphine ligand, di-tert-buthylphosphino pentaphenylferrocene ligand, or di-adamantyl-substituted Bippyphos ligand developed by Buchwald, Hartwig, and Beller groups respectively. With the copper catalyst, 1, 10-phenanthroline and its derivatives, β-dicarbonyl compounds were served as the most efficient ligands. Generally, palladium-catalyzed C—O cross-coupling reactions display mild reaction conditions, good functional-group compatability, and broad substrate scope compared to the copper catalyst system. Moreover, the difference of the two catalytic systems including the choice of ligand, reactivity, β-H elimination and mechanism is discussed. The design and synthesis of new ligands are the key point for the further development of the C—O cross coupling.

Contents
1 Introduction
2 Pd-catalzyed arylation of alphatic alcohols
3 Cu-catalyzed arylation of alphatic alcohols
3.1 Cu-catalyzed C—O cross coupling reaction without ligand
3.2 Cu-catalyzed C—O cross coupling reaction in the presence of ligand
4 Comparative studies of two catalysts
4.1 Choice of ligands
4.2 Catalytic activity
4.3 β-H elimination reaction
4.4 Reaction mechanism
5 Conclusion and outlook

CLC Number: 

[1] Diederich F, Meijere A. Metal-Catalyzed Cross-Coupling Reactions. Weinheim: Wiley-VCH, 2004
[2] Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev., 2002, 102 (5): 1359—1470
[3] Miyaura N. Topics in Current Chemistry. Vol. 219. New York: Springer-Verlag, 2002
[4] Frlan R, Kikelj D. Synthesis, 2006, (14): 2271—2285
[5] 于海珠 (Yu H Z), 傅尧 (Fu Y), 白小宇 (Bai X Y), 郭庆祥 (Guo Q X). 化学进展 (Progress in Chemsitry), 2010, 22 (4): 557—572
[6] Sawyer J S. Tetrahedron, 2000, 56 (29): 5045—5065
[7] Enthaler S, Company A. Chem. Soc. Rev., 2011, 40 (10): 4912—4924
[8] Palucki M, Wolfe J P, Buchwald S L. J. Am. Chem. Soc., 1996, 118 (42): 10333—10334
[9] Mann G, Hartwig J F. J. Am. Chem. Soc., 1996, 118 (51): 13109—13110
[10] Mann G, Incarvito C, Rheingold A L, Hartwig J F. J. Am. Chem. Soc., 1999, 121 (13): 3224—3225
[11] Shelby Q, Kataoka N, Mann G, Hartwig J F. J. Am. Chem. Soc., 2000, 122 (43): 10718—10719
[12] Kataoka N, Shelby Q, Stambuli J P, Hartwig J F. J. Org. Chem., 2002, 67 (16): 5553—5566
[13] Torraca K E, Kuwabe S I, Buchwald S L. J. Am. Chem. Soc., 2000, 122 (51): 12907—12908
[14] Kuwabe S I, Torraca K E, Buchwald S L. J. Am. Chem. Soc., 2001, 123 (49): 12202—12206
[15] Vorogushin A V, Huang X, Buchwald S L. J. Am. Chem. Soc., 2005, 127 (22): 8146—8149
[16] Singer R A, Doré M, Sieser J E, Berliner M A. Tetrahedron Lett., 2006, 47 (22): 3727—3731
[17] Withbroe G J, Singer R A, Sieser J E. Org. Process. Res. Dev., 2008, 12 (3): 480—489
[18] Gowrisankar S, Sergeev A G, Anbarasan P, Spannenberg A, Neumann H, Beller M. J. Am. Chem. Soc., 2010, 132 (33): 11592—11598
[19] Gowrisankar S, Neumann H, Beller M. ChemCatChem, 2011, 3 (9): 1439—1441
[20] Gowrisankar S, Neumann H, Beller M. Chem. Eur. J., 2012, 18 (9): 2498—2502
[21] Wu X, Fors B P, Buchwald S L. Angew. Chem. Int. Ed., 2011, 50 (42): 9943—9947
[22] Hoshiya N, Buchwald S L. Adv. Synth. Catal., 2012, 354 (10): 2031—2037
[23] Zhu R, Buchwald S L. Angew. Chem. Int. Ed., 2012, 51 (8): 1926—1929
[24] Dash P, Janni M, Peruncheralathan S. Eur. J. Org. Chem., 2012, (26): 4914—4917
[25] Maligres P E, Li J, Krska S W, Schreier J D, Raheem I T. Angew. Chem. Int. Ed., 2012, 51 (36): 9071—9074
[26] Watanabe M, Nishivama M, Koie Y. Tetrahedron Lett., 1999, 40 (50): 8837—8840
[27] Ylijoki K E O, Kündig E P. Chem. Commun., 2011, 47 (38): 10608—10610
[28] Jing X B, Yan C G, Sun J, Wang L, An L. Chin. Chem. Lett., 2004, 15 (12): 1392—1394
[29] Neogi A, Majhi T P, Achari B, Chattopadhyay P. Eur. J. Org. Chem., 2008, (2): 330—336
[30] Bhattacharya D, Behera A, Hota S K, Chattopadhyay P. Synthesis, 2011, (4): 585—592
[31] Khoumeri O, Crozet M D, Terme T, Vanelle P. Tetrahedron Lett., 2009, 50 (46): 6372—6376
[32] Meng T, Zhang W X, Zhang H J, Liang Y, Xi Z. Synthesis, 2012, 44 (17): 2754—2762
[33] Ullmann F. Chem. Ber., 1904, 37: 853—854
[34] Lindley J. Tetrahedron, 1984, 40 (9): 1433—1456
[35] Chan D M T, Monaco K L, Wang R P, Winters M P. Tetrahedron Lett., 1998, 39 (19): 2933—2936
[36] Lam P Y S, Clark C G, Saubern S, Adams J, Winters M P, Chan D M T, Combs A. Tetrahedron Lett., 1998, 39 (19): 2941—2944
[37] Rao K S, Wu T S. Tetrahedron, 2012, 68 (38): 7735—7754
[38] Quach T D, Batey R A. Org. Lett., 2003, 5 (8): 1381—1384
[39] Lam P Y S, Vincent G, Bonne D, Clark C G. Tetrahedron Lett., 2003, 44 (26): 4927—4931
[40] Mondal M, Sarmah G, Gogoi K, Bora U. Tetrahedron Lett., 2012, 53 (46): 6219—6222
[41] Sicé J. J. Am. Chem. Soc., 1953, 75 (15): 3697—3700
[42] Keegstra M A, Peters T H A, Brandsma L. Tetrahedron, 1992, 48 (17): 3633—3652
[43] Basu B, Das S, Mandal B. Indian J. Chem. Sect B, 2008, 47B (11): 1701—1706
[44] Aalten H L, van Koten G, Grove D M, Kuilman T, Piekstra O G, Hulshof L A, Sheldon R A. Tetrahedron, 1989, 45 (17): 5565—5578
[45] Amberg W, Bennani Y L, Chadha R K, Crispino G A, Davis W D, Hartung J, Jeong K S, Ogino Y, Shibata T, Sharpless K B. J. Org. Chem., 1993, 58 (4): 844—849
[46] Huang J K, Chen Y, Chan J, Ronk M L, Larsen R D, Faul M M. Synlett, 2011, (10): 1419—1422
[47] Zhu J Y, Price B A, Zhao S X, Skonezny P M. Tetrahedron Lett., 2000, 41 (21): 4011—4014
[48] Bovicelli P, Antonioletti R, Onori A, Delogu G, Fabbri D, Dettori M A. Tetrahedron, 2006, 62 (4): 635—639
[49] Maiti D. Chem. Commun., 2011, 47 (29): 8340—8342
[50] Ley S V, Thomas A W. Angew. Chem. Int. Ed., 2003, 42 (44): 5400—5449
[51] Beletskaya I P, Cheprakov A V. Coord. Chem. Rev., 2004, 248 (21/24): 2337—2364
[52] Sadig J E R, Willis M C. Synthesis, 2011, (1): 1—22
[53] Dehli J R, Legros J, Bolm C. Chem. Commun., 2005, (8): 973—986
[54] Fang Y W, Li C Z. Chem. Commun., 2005, (28): 3574—3576
[55] Fang Y W, Li C Z. J. Org. Chem., 2006, 71 (17): 6427—6431
[56] Fagan P J, Hauptman E, Shapiro R, Casalnuovo A. J. Am. Chem. Soc., 2000, 122 (21): 5043—5051
[57] Wolter M, Nordmann G, Job G E, Buchwald S L. Org. Lett., 2002, 4 (6): 973—976
[58] Job G E, Buchwald S L. Org. Lett., 2002, 4 (21): 3703—3706
[59] Bao W L, Liu Y Y, Lv X, Qian W X. Org. Lett., 2008, 10 (17): 3899—3902
[60] Liu Y Y, Bao W L. Org. Biomol. Chem., 2010, (12): 2700—2703
[61] Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Alikarami M. Synlett, 2005, (7): 1101—1104
[62] Dibakar M, Prakash A, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett., 2011, 52 (41): 5338—5341
[63] Fang Y W, Li C Z. J. Am. Chem. Soc., 2007, 129 (26): 8092—8093
[64] Altman R A, Shafir A, Chio A, Lichtor P A, Buchwald S L. J. Org. Chem., 2007, 73 (1): 284—286
[65] Nordmann G, Buchwald S L. J. Am. Chem. Soc., 2003, 125 (17): 4978—4979
[66] Polaske N W, Szalai M L, Shanahan C S, McGrath D V. Org. Lett., 2010, 12 (21): 4944—4947
[67] Shafir A, Lichtor P A, Buchwald S L. J. Am. Chem. Soc., 2007, 129 (12): 3490—3491
[68] Jones G O, Liu P, Houk K N, Buchwald S L. J. Am. Chem. Soc., 2010, 132 (17): 6205—6213
[69] Yu H Z, Jiang Y Y, Fu Y, Liu L. J. Am. Chem. Soc., 2010, 132 (51): 18078—18091
[70] Zhang H, Ma D W, Cao W G. Synlett, 2007, (2): 243—246
[71] Niu J J, Zhou H, Li Z G, Xu J W, Hu S J. J. Org. Chem., 2008, 73 (19): 7814—7817
[72] Niu J J, Guo P, Kang J T, Li Z G, Xu J W, Hu S J. J. Org. Chem., 2009, 74 (14): 5075—5078
[73] Vuluga D, Legros J, Crousse B, Bonnet-Delpon D. Eur. J. Org. Chem., 2009, (21): 3513—3518
[74] Maligres P E, Krska S W, Dormer P G. J. Org. Chem., 2012, 77 (17): 7646—7651
[75] Widenhoefer R A, Zhong H A, Buchwald S L. J. Am. Chem. Soc., 1997, 119 (29): 6787—6795
[76] Widenhoefer R A, Buchwald S L. J. Am. Chem. Soc., 1998, 120 (26): 6504—6511
[77] Aranyos A, Old D W, Kiyomori A, Wolfe J P, Sadighi J P, Buchwald S L. J. Am. Chem. Soc., 1999, 121 (18): 4369—4378
[78] Giri R, Hartwig J F. J. Am. Chem. Soc., 2010, 132 (45): 15860—15863
[79] Beletskaya I P, Cheprakov A V. Organometallics, 2012, 31 (22): 7753—7808
[80] Monnier F, Taillefer M. Angew. Chem. Int. Ed., 2009, 48 (38): 6954—6971
[81] Chen C Y, Weisel M. Synlett, 2013, 24 (2): 189—192
[82] Manbeck G F, Lipman A J, Stockland R A Jr, Freidl A L, Hasler A F, Stone J J, Guzei I A. J. Org. Chem., 2005, 70 (1): 244—250
[83] Mehmood A, Denine W G, Leadbeater N E. Top. Catal., 2010, 53 (15/18): 1073—1080

[1] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[2] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[3] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[4] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[5] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.
[6] Ma Lei, Liu Yu, Chai Zhifang. 64Cu Radiopharmaceutical Chemistry [J]. Progress in Chemistry, 2012, (9): 1720-1728.
[7] Pan Dengfang, Ye Gang, Wang Fang, Chen Jing. Trivalent Actinides/Lanthanides Separation by Nitrogen Heterocyclic Ligands [J]. Progress in Chemistry, 2012, 24(11): 2167-2176.
[8] Yang Liancheng, Qi Xiangyang, Xu Longhe. Formation of P-C Bonds via Palladium-Catalyzed Cross-Coupling Reactions [J]. Progress in Chemistry, 2011, 23(5): 893-902.
[9] . Preparation of Nanoparticles with Multi-Functional Water-Soluble Polymer Ligands [J]. Progress in Chemistry, 2010, 22(05): 953-961.
[10] . Structure of G-Quadruplex in the Oncogene c-myc Promoter and Small Ligands Targeting the G-Quadruplex [J]. Progress in Chemistry, 2010, 22(05): 983-992.
[11] Yuan Sichun Chen Haibo Wang Huichuan. Assembly and Metal Complex Properties of Terpyridine Ligands [J]. Progress in Chemistry, 2009, 21(10): 2132-2152.
[12]

Wang Yadan, Wang Fei, Miao Zhiwei**, Chen Ruyu**

. Chiral Phosphorus Ligands Derived from Carbohydrate Scaffolds for Asymmetric Catalysis [J]. Progress in Chemistry, 2008, 20(12): 1923-1932.
[13] Li Zhengning1* Liu Gailing1 Zhao Baoyi2. The Application of H-Cu-P Complexes in Organic Synthesis [J]. Progress in Chemistry, 2008, 20(12): 1909-1922.
[14] Zhende Liu,Xuchang He**. The Application of Chiral Ferrocene Ligands in Palladium-Catalyzed Asymmetric Reactions [J]. Progress in Chemistry, 2006, 18(11): 1489-1497.
[15] Junfang Gong,Chen Xu,Yangjie Wu**. Transition-Metal Catalyzed α-Arylation of Carbonyl Derivatives and Compounds with Acidic Hydrogen [J]. Progress in Chemistry, 2006, 18(06): 752-760.