中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1842-1857 DOI: 10.7536/PC130148 Previous Articles   Next Articles

• Review •

Underpotential Deposition

Guo Lei, Tan Jianhong*, Li Wenpo, Hu Ge, Zhang Shengtao   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
PDF ( 2383 ) Cited
Export

EndNote

Ris

BibTeX

Underpotential deposition (UPD), the phenomenon of metal monolayer(s) formation on a foreign metal substrate at a potential more positive than the equilibrium potential for bulk electro-deposition, has been the subject of considerable research in recent years because it yields model systems for investigation of the electrode/electrolyte interface. Broadly speaking, the defined sedimentary elements or substrates of UPD are not limited to metal elements, and also include other substances such as nonmetallic elements, nano-particles, and so forth. In virtue of the great potential that monolayer film of dissimilar metals can significantly change the potential distribution near the interface, the orientation of the solvent molecules and the adsorption behaviors and reaction ability of the base metal surface, UPD draws great academic attention to its applications in electro-catalysis as well as electro-deposition of metal and alloy. A large number of experimental reports about UPD have been published so far. Based on literature in existence, several theoretical models and the behavior characteristics of UPD were summarized. Moreover, some factors such as substrates, ionic adsorption and temperature on the UPD process were emphasized. Finally, its practical applications were highlighted and the future research directions were pointed out.

Contents
1 Introduction
2 Theoretical models for UPD
2.1 Relations between UPD potential shifts and work functions
2.2 Thermodynamic model
2.3 DFT method
2.4 Monte Carlo method
3 The processes of UPD
3.1 Nucleation characteristics
3.2 Influence of substrate
3.3 Influence of adsorption ions
3.4 Effect of temperature
4 Applications
4.1 Improve electrocatalytic activity
4.2 EC-ALE technology
4.3 Self-assembled monolayer
5 Conclusion and outlook

CLC Number: 

[1] Matsumoto H, Oda I, Inukai J, Ito M. J. Electroanal. Chem., 1993, 356: 275— 280
[2] Buller L J, Herrero E, Gomez R, Feliu J M, Abruna H D. J. Phys. Chem. B, 2000, 104: 5932—5939
[3] Jovi D? B M, Jovi D? V D, Dra?i D? D M. J. Electroanal. Chem., 1995, 399: 197—206
[4] Colletti L P, Teklay D, Stickney J L. J. Electroanal. Chem., 1994, 369: 145—152
[5] Kontrec J, Svetlicic V. Electrochimica Acta, 1998, 43: 589 —598
[6] Clavilier J, Rodes A, Elachi K, Zamakhchari M A. J. Chim. Phys. Phys.-Chim. Biol., 1991, 88: 1291—1337
[7] Arrigan D W M, Iqbal T, Pickup M J. Electroanalysis, 2001, 13: 751—754
[8] Wang C M, Du Y L, Zhou Z L. Electroanalysis, 2002, 14: 849—852
[9] Montes-Rojas A, Torres-Rodriguez L M, Nieto-Delgado C. New J. Chem., 2007, 31: 1769—1776
[10] Yanson Y, Frenken J W M, Rost M J. Phys. Chem. Chem. Phys., 2011, 13: 16095—16103
[11] Alonso C, Pascual M J, Abrua H D. Electrochimica Acta, 1997, 42: 1739—1750
[12] Rudnev A V, Molodkina E B, Danilov A I, Polukarov Y M, Feliu J M. Electrochem. Commun., 2008, 10: 502—505
[13] Taguchi S, Aramata A. J. Electroanal. Chem., 1995, 396: 131—137
[14] Mascaro L H, Santos M C, Machado S A S, Avaca L A. J. Chem. Soc. Faraday Trans., 1997, 93: 3999—4003
[15] Markovic N M, Grgur B N, Lucas C A, Ross P N. J. Chem. Soc. Faraday Trans., 1998, 94: 3373—3379
[16] Alanyalioglu M, Cakal H, Ozturk A E, Demir U. J. Phys. Chem. B, 2001, 105: 10588—10593
[17] Nicic I, Liang J, Cammarata V, Alanyalioglu M, Demir U, Shannon C. J. Phys. Chem. B, 2002, 106: 12247—12252
[18] Bravo B G, Michelhaugh S L, Soriaga M P, Villegas I, Suggs D W, Stickney J L. J. Phys. Chem., 1991, 95: 5245—5249
[19] Brisard G M, Zenati E, Gasteiger H A, Markovic N M, Ross P N. Langmuir, 1997, 13: 2390—2397
[20] Beckmann H O, Gerischer H, Kolb D M, Lehmpfuhl G. Faraday Symp. Chem. Soc., 1977, 12: 51—58
[21] Pierozynski B, Zolfaghari A, Conway B E. Phys. Chem. Chem. Phys., 2001, 3: 469—478
[22] Chen Y X, Heinen M, Jusys Z, Behm R J. J. Phys. Chem. C, 2007, 111: 435—438
[23] Brisard G M, Zenati E, Gasteiger H A, Markovic N M, Ross P N. Langmuir, 1997, 13: 2390—2397
[24] Cabral M F, Calegaro M L, Machado S A S. RSC Adv., 2012, 2: 2498—2503
[25] Zeng X J. Bruckenstein S. J. Electroanal. Chem., 1999, 461: 143—153
[26] Calegaro M L, Santos M C, Miwa D W, Machado S A S. Surf. Sci., 2005, 579: 58—64
[27] Li W P, Zhang S T. Appl. Surf. Sci., 2011, 257: 3275 —3280
[28] Lee J, Hwang S, Lee H, Kwak J. J. Phys. Chem. B, 2004, 108: 5372—5379
[29] Okada J, Inukai J, Itaya K. Phys. Chem. Chem. Phys., 2001, 3: 3297—3302
[30] Hommrich J, Hümann S, Wandelt K. Faraday Discuss., 2002, 121: 129—138
[31] Pan G B, Freyland W. Phys. Chem. Chem. Phys., 2007, 9: 3286—3290
[32] Hayden B E, Nandhakumar I S. J. Phys. Chem. B, 1997, 101: 7751—7757
[33] Shue C H, Yau S L. J. Phys. Chem. B, 2001, 105: 5489 —5496
[34] Fu Y C, Su Y Z, Zhang H M, Yan J W, Xie Z X, Mao B W. Electrochim. Acta, 2010, 55: 8105—8110
[35] Fu Y C, Yan J W, Wang Y, Tian J H, Zhang H M, Xie Z X, Mao B W. J. Phys. Chem. C, 2007, 111: 10467—10477
[36] Chen C H, Washburn N, Gewirth A A. J. Phys. Chem., 1993, 97: 9754—9760
[37] Li J, Herrero E, Abruna H D. Colloid. Surface. A, 1998, 134: 113—131
[38] Abaci S, Zhang L S, Shannon C. J. Electroanal. Chem., 2004, 571: 169—176
[39] Tamura K, Wang J X, Adic R R, Ocko B M. J. Phys. Chem. B, 2004, 108: 1992—1998
[40] Lee J R I, O'Malley R L, O'Connell T J, Vollmer A, Rayment T. J. Phys. Chem. C, 2009, 113: 12260—12271
[41] Lee J R I, O'Malley R L, O'Connell T J, Vollmer A, Rayment T. Electrochim. Acta, 2010, 55: 8532—8538
[42] Yee H S, Abrua H D. J. Phys. Chem., 1994, 98: 6552 —6558
[43] Tsirlina G, Mishina E, Timofeeva E, Tanimura N, Sherstyuk N, Borzenko M, Nakabayashi S, Petrii O. Faraday Discuss., 2008, 140: 245—267
[44] Mishina E D, Tsirlina G A, Timofeeva E V, Sherstyuk N E, Borzenko M I, Tanimura N, Nakabayashi S, Petrii O A. J. Phys. Chem. B, 2004, 108: 17096—17105
[45] Horányi G, Aramata A. J. Electroanal. Chem., 1997, 434: 201—207
[46] Marczona R, Varga K. J. Radioanal. Nucl. Chem., 2006, 269: 29—42
[47] 查全性(Zha Q X). 电极过程动力学导论(第二版) (Introduction to Electrode Kinetics, 2nd ed. ). 北京: 科学出版社(Beijing: Science Press), 1987. 439—440
[48] 颜永得(Yan Y D), 张密林(Zhang M L), 韩伟(Han W), 薛云(Suo Y), 何立义(He L Y), 陈增(Chen Z), 唐定骧(Tang D X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24: 902—906
[49] 陈丽军(Chen L J), 张密林(Zhang M L), 韩伟(Han W), 颜永得(Yan Y D), 曹鹏(Cao P). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33: 327—330
[50] Pitner W R, Hussey C L. J. Electrochem. Soc., 1997, 144: 3095—3103
[51] Du Y L, Wang C M. Chin. J. Chem., 2002, 20: 596—600
[52] Herrero E, Li J, Abruna H D. Electrochim. Acta, 1999, 44: 2385—2396
[53] Attard G A, Price R, Alakl A. Electrochim. Acta, 1994, 39: 1525—1530
[54] Varga K, Zelenay P, Horanyi G, Wieckowski A. J. Electro anal. Chem., 1992, 327: 291—306
[55] Wei Z D, Li L L, Luo Y H, Yan C, Sun C X, Yin G Z, Shen P K. J. Phys. Chem. B, 2006, 110(51): 26055— 26061
[56] Marinkovic N S, Fawcett W R, Wang J X, Adzic R R. J. Phys. Chem., 1995, 99: 17490—17493
[57] Gomez R, Llorca M J, Feliu J M, Aldaz A. J. Electroanal. Chem., 1992, 340: 349—355
[58] Peng B, Wang J Y, Zhang H X, Lin Y H, Cai W B. Electrochem. Commun., 2009, 11: 831—833
[59] Clavilier J, Feliu J M, Fernandez-Vega A, Aldaz A. J. Electroanal. Chem., 1990, 294: 193—208
[60] Jin C C, Zhang Z, Chen Z D, Chen Q. Electrochim. Acta, 2013, 87: 860—864
[61] Ritzoulis G, Georgolios N. J. Electroanal. Chem., 1993, 346: 405—414
[62] Taguchi S, Fukuda T, Aramata A. J. Electroanal. Chem., 1997, 435: 55—61
[63] Shin J W, Bertocci U, Stafford G R. J. Phys. Chem. C, 2010, 114: 17621—17628
[64] Rodes A, Herrero E, Feliu J M, Aldaz A. J. Chem. Soc., Faraday Trans., 1996, 92: 3769—3776
[65] Morin S, Lachenwitzer A, Moller F A, Magnussen O M, Behm R J. J. Electrochem. Soc., 1999, 146: 1013—1018
[66] Zhu W, Yang J Y, Zhou D X, Bao S Q, Fan X A, Duan X K. Electrochim. Acta, 2007, 52: 3660—3666
[67] Lister T E, Stickney J L. J. Phys. Chem., 1996, 100: 19568—19576
[68] Dietterle M, Will T, Kolb D M. Surf. Sci., 1995, 342: 29—802
[69] Daujotis V, Gaidamauskas E. J. Electroanal. Chem., 1998, 446: 151—157
[70] Bewick A, Thomas B. J. Electroanal. Chem., 1977, 84: 127—140
[71] Toney M F, Gordon J G, Samant M G, Borges G L, Wiesler D G, Langmuir, 1991, 7: 796—802
[72] Bort H, Juttner K, Lorenz W J, Staikov G. Electrochim. Acta, 1983, 28: 993—1001
[73] Miragliotta J, Furtak T E. Surf. Interface Anal., 1989, 14: 53—58
[74] Berg D A, Vandernoot V A, Barradas R G, Lai E P C. J. Electroanal. Chem., 1994, 369: 33—37
[75] Kizhakevariam N, Weaver M J. Surf. Sci., 1992, 277: 21— 30
[76] Yang L Y O, Bensliman F, Shue C H, Yang Y C, Zang Z H, Wang L, Yau S L, Yoshimoto S, Itaya K. J. Phys. Chem. B, 2005, 109: 14917—14924
[77] Kolb D M, Przasnyski M, Gerischer H. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54: 25—38
[78] Pletcher D, Rohan J F, Rithie A G. Electrochim. Acta, 1994, 39: 1369—1376
[79] Tsuru T, Kobayashi S, Akiyama T, Fukushima H, Gogia S K, Kammel R. J. Appl. Electrochem., 1997, 27: 209—214
[80] Conway B E, Chacha J S. J. Electroanal. Chem. Interfacial Electrochem., 1990, 287: 13—41
[81] Paddon C A, Compton R G. J. Phys. Chem. C, 2007, 111: 9016—9018
[82] Leiva E, Schmickler W. Chem. Phys. Lett., 1989, 160: 75 —79
[83] Schmickler W. Chem. Phys., 1990, 141: 95—104
[84] Sudha V, Sangaranarayanan M V. J. Phys. Chem. B, 2002, 106: 2699—2707
[85] Trasatti S. Advances in Electrochemistry and Electro-Chemical Engineering (Eds Gerischer H, Tobias C W). New York: John Wiley Interscience, 1978. 285—297
[86] Sánchez C, Leiva E. J. Electroanal. Chem., 1998, 458: 183 —189
[87] Dietterle M, Will T, Kolb D M. Surf. Sci., 1995, 342: 29 —37
[88] Garcia S, Salinas D, Mayer C, Schmidt E, Staikov G, Lorenz W J. Electrochim. Acta, 1998, 43: 3007—3019
[89] Palomares F J, Serrano M, Ruiz A, Soria F, Horn K, Alonso M. Surf. Sci., 2002, 513: 283—294
[90] Mishra P, Uchihashi T, Nakayama T. Phys. Rev. B, 2010, 81: art. no. 15430
[91] Topwal D, Manju U, Pacilé D, Papagno M, Wortmann D, Bihlmayer G, Blügel S, Carbone C. Phys. Rev. B, 2012, 86: art. no. 085419
[92] Vélez P, Cuesta A, Leiva E P M, Macagno V A. Electrochem. Commun., 2012, 25: 54—57
[93] Budevski E, Staikov G, Lorenz W J. Electrochemical Phase Formation and Growth. Weinheim: WILEY-VCH Verlag GmbH, 1996. 44—140
[94] 李文坡(Li W P), 张胜涛(Zhang S T), 杨林台(Yang L T), 魏子栋(Wei Z D). 化学学报(Acta Chimica Sinica), 2009, 67(6): 529—534
[95] Giménez M C, Ramirez-Pastor A J, Leiva E P M. Surf. Sci., 2006, 600: 4741—4751
[96] Giménez M C, Del Pópolo M G, Leiva E P M. Electrochim. Acta, 1999, 45: 699—712
[97] Oviedo O A, Negre C F A, Mariscal M M, Sánchez C G, Leiva E P M. Electrochem. Commun., 2012, 16: 1—5
[98] Oviedo O A, Reinaudi L, Leiva E P M. Electrochem. Commun., 2012, 21: 14—17
[99] Bauer E, Van der Merwe J H. Phys. Rev. B, 1986, 33: 3657—3681
[100] Maestre M S, Rodríguez-Amaro R, Muñoz E, Ruiz J J, Camacho L. J. Electroanal. Chem., 1994, 373(1): 31—37
[101] Bewick A, Fleischmann M, Thirsk H R. Trans. Faraday Soc., 1962, 58(479): 2200—2216
[102] 李强(Li Q), 辜敏(Gu M), 鲜晓红(Xian X H). 化学进展(Progress in Chemistry), 2008, 20: 483—490
[103] Nicic I, Liang J, Cammarata V, Alanyalioglu M, Demir U, Shannon C. J. Phys. Chem. B, 2002, 106: 12247—12252
[104] Hamelin A. J. Electroanal. Chem., 1979, 101: 285—290
[105] Carnal D, Oden P I, Muller U, Schmidt E, Siegenthaler H. Electrochim. Acta, 1995, 40: 1223—1235
[106] Green M P, Hanson K J, Carr R, Lindau I. J. Electrochem. Soc., 1990, 137: 3493—3498
[107] Palomar-Pardavé M, Garfias-García E, Romero-Romo M, Ramírez-Silva M T, Batina N. Electrochim. Acta, 2011, 56: 10083—10092
[108] 朱文(Zhu W), 杨君友(Yang J Y), 周东祥(Zhou D X), 鲍思前(Bao S Q), 樊希安(Fan X A), 段兴凯(Duan X K). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28: 719—722
[109] Wang J G, Tang J, Fu Y C, Wei Y M, Chen Z B, Mao B W. Electrochem. Commun., 2007, 9: 633—638
[110] Yan J W, Sun C F, Zhou X S, Tang Y A, Mao B W. Electrochem. Commun., 2007, 9: 2716—2720
[111] Garcia S, Salinas D, Mayer C, Schmidt E, Staikov G, Lorenz W J. Electrochim. Acta, 1998, 43: 3007—3019
[112] Alanyalioglu M, Cakal H, Ozturk A E, Demir U. J. Phys. Chem. B, 2001, 105: 10588—10593
[113] Sanchez P L, Elliott J M. Analyst, 2005, 130: 715—720
[114] Batchelor-McAuley C, Wildgoose G G, Compton R G. New J. Chem., 2008, 32: 941—946
[115] Herrero E, Buller L J, Abruna H D. Chem. Rev., 2001, 101: 1897—1930
[116] Gómez R, Feliu J M. J. Electroanal. Chem., 2003, 554: 145—156
[117] Taguchi S, Aramata A. J. Electroanal. Chem., 1995, 396: 131—137
[118] Gómez R, Feliu J M, Abrua H D. J. Phys. Chem., 1994, 98: 5514—5521
[119] Takahashi S, Hasebe K, Aramata A. Electrochem. Commun., 1999, 1: 301—304
[120] Alakl A, Attard G A. J. Phys. Chem. B, 1997, 101: 4597— 4606
[121] Nishihara C, Iwata K, Tai T, Yuasa M, Sekine I, Nozoye H. Electrochem. Commun., 1999, 1: 104—107
[122] White J H, Abrua H D. J. Phys. Chem., 1990, 94: 894 —900
[123] Takahashi S, Aramata A, Nakamura M, Hasebe K, Taniguchi M, Taguchi S, Yamagishi A. Surf. Sci., 2002, 512: 37—47
[124] Aramata A, Taguchi S, Fukuda T, Nakamura M, Horányi G. Electrochim. Acta, 1998, 44: 999—1007
[125] Jerkiewicz G, Perreault F, Radovic-Hrapovic Z. J. Phys. Chem. C, 2009, 113: 12309—12316
[126] Abaci S, Zhang L S, Shannon C. J. Electroanal. Chem., 2004, 571: 169—176
[127] Vracar J, Krstajic N, Neophytides S G, Jakic J. Int. J. Hydrogen Energy, 2004, 29: 835—842
[128] Staikov G, Milchev A. Electrocrystallization in nanotechnology (Ed. Staikov G). Weinheim (Germany): WILEY-VCH Verlag GmbH & Co. KGa A, 2010. 17—20
[129] Watanabe M, Motoo S. J. Electroanal. Chem., 1975, 60: 259—266
[130] Markovic N, Ross P N. J. Electroanal. Chem., 1992, 330: 499—520
[131] Wang S R, Fedkiw P S. J. Electrochem. Soc., 1992, 139: 3151—3158
[132] Lei H W, Suh S, Gurau B, Workie B, Liu R X, Smotkin E S. Electrochim. Acta, 2002, 47: 2913—2919
[133] Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Leger J M. Electrochim. Acta, 2004, 49: 3901—3908
[134] Kahyaoglu A, Beden B, Lamy C. Electrochim. Acta, 1984, 29: 1489—1492
[135] Huser H, Leger J M, Lamy C. Electrochim. Acta, 1988, 33: 1359—1365
[136] Kokoh K B, Leger J M, Lamy C. Electrochim. Acta, 1992, 37: 1333—1342
[137] Kokoh K B, Leger J M, Beden B, Huser H, Lamy C. Electrochim. Acta, 1992, 37: 1909—1918
[138] Abe T, Swain G M, Sashikata K, Itaya K. J. Electroanal. Chem., 1995, 382: 73—83
[139] Kokkinidis G, Papoutsis A, Papanastasoiu G. J. Electroanal. Chem., 1993, 359: 253—271
[140] Motoo S, Furuya N. J. Electroanal. Chem., 1982, 139: 105 —117
[141] Holze R, Fette U. J. Electroanal. Chem., 1992, 339: 247— 253
[142] Furuya N, Motoo S. J. Electroanal. Chem., 1976, 72: 165 —175
[143] Kolb D M, Leutloff D. Chem. Phys. Lett., 1978, 55(2): 264—266
[144] 张海艳(Zhang H Y), 曹春晖(Cao C H), 赵健(Zhao J), 林瑞(Lin R), 马建新(Ma J X). 催化学报(Chinese Journal of Catalysis), 2012, 33: 222—229
[145] Zhang J, Lima F H B, Shao M H, Sasaki K, Wang J X, Hanson J, Adic R R. J. Phys. Chem. B, 2005, 109: 22701—22704
[146] Sasaki K, Wang J X, Naohara H, Marinkovic N, More K, Inada H, Ad?ic R R. Electrochim. Acta, 2010, 55: 2645— 2652
[147] Zhang J L, Vukmirovic M B, Xu Y, Mavrikakis M, Adic R R. Angew. Chem. Int. Ed., 2005, 44: 2132—2135
[148] Wei Z D, Feng Y C, Li L, Liao M J, Fu Y, Sun C X, Shao Z G, Shen P K. J. Power Sources, 2008, 180(1): 84—91
[149] Wang S H, Zhang H X, Cai W B. J. Power Sources, 2012, 212: 100—104
[150] 徐政久(Xu Z J), 李作骏(Li Z J). 高等学校化学学报(Chemical Journal of Chinese Universities), 1986, 7: 345—350
[151] Gregory B W, Stickney J L. J. Electroanal. Chem. Interfacial Electrochem., 1991, 300: 543—561
[152] Wade T L, Vaidyanathan R, Happek U, Stickney J L. J. Electroanal. Chem., 2001, 500: 322—332
[153] Innocenti M, Cattarin S, Loglio F, Cecconi T, Seravalli G, Foresti M L. Electrochim. Acta, 2004, 49: 1327—1337
[154] Kim J Y, Kim Y G, Stickney J L. J. Electrochem. Soc., 2007, 154: D260—D266
[155] Thambidurai C, Kim Y G, Stickney J L. Electrochim. Acta, 2008, 53: 6157—6164
[156] Qiao Z Q, Shang W, Wang C M. J. Electroanal. Chem., 2005, 576: 171—175
[157] Flowers B H, Wade T L, Garvey J W, Lay M, Happek U, Stickney J L. J. Electroanal. Chem., 2002, 524: 273—285
[158] Vaidyanathan R, Stickney J L, Happek U. Electrochim. Acta, 2004, 49: 1321—1326
[159] Zhu W, Yang J Y, Zhou D X, Xiao C J, Duan X K. Electrochim. Acta, 2008, 53: 3579—3586
[160] Zhu W, Yang J Y, Cao X H, Bao S Q, Fan X A, Zhang T J, Cui K. Electrochim. Acta, 2005, 50: 4041—4047
[161] Kim Y G, Kim J Y, Vairavapandian D, Stickney J L. J. Phys. Chem. B, 2006, 110: 17998—18006
[162] Fayette M, Liu Y, Bertrand D, Nutariya J, Vasiljevic N, Dimitrov N. Langmuir, 2011, 27: 5650—5658
[163] Huang J F. Electroanalysis, 2008, 20: 2229—2234
[164] Stickney J L. Advances in Electrochemistry and Electrochemical Engineering (Eds. Alkire R C H, Kolb D M). Weinheim (Germany): WILEY-VCH Verlag GmbH, 2002. 1—106
[165] 翟怡(Zhai Y), 张金利(Zhang J L), 李韦(Li W), 王一平(Wang Y P). 化学进展(Progress in Chemistry), 2004, 16: 478—484
[166] Nuzzo R G, Allara D L. J. Am. Chem. Soc., 1983, 105: 4481—4484
[167] Jennings G K, Laibinis P E. J. Am. Chem. Soc., 1997, 119: 5208—5214
[168] Jennings G K, Laibinis P E. Langmuir, 1996, 12: 6173 —6175
[169] Chen I W P, Chen C C, Lin S Y, Chen C H. J. Phys. Chem. B, 2004, 108: 17497—17504
[170] Hsieh M H, Chen C H. Langmuir, 2000, 16: 1729—1733
[171] Oyamatsu D, Kuwabata S, Yoneyama H. J. Electroanal. Chem., 1999, 473: 59—67
[172] Oyamatsu D, Kanemoto H, Kuwabata S, Yoneyama H. J. Electroanal. Chem., 2001, 497: 97—105
[173] Shimazu K, Kawaguchi T, Isomura T. J. Am. Chem. Soc., 2002, 124: 652—661
[174] Kawaguchi T, Shimazu K. Chem. Lett., 2001, 1: 90—91

[1] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[2] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[3] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[4] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[7] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[8] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[11] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[12] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[13] Zheng Na, Jie Suyun, Li Bogeng. Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene [J]. Progress in Chemistry, 2016, 28(5): 665-672.
[14] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[15] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
Viewed
Full text


Abstract

Underpotential Deposition