中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1642-1647 DOI: 10.7536/PC130136 Previous Articles   Next Articles

MD Simulations of the Water Transportation in Nanochannels under the Environments of Electric Fields

Li Hui, Fan Jianfen, Song Xuezeng, Liu Dongyan, Li Rui, Chen Sufang   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
PDF ( 702 ) Cited
Export

EndNote

Ris

BibTeX

The transportation properties of water in nanochannels have been widely studied by molecular dynamics (MD) simulations. In the environments of electric fields, the behaviors of water, such as molecular dipole orientations, flux, diffusion rate, water filling/empty equilibriums and phase-transition processes, etc., are much influenced. This review surveys the methods of introducing electric fields in MD simulations, including assigning charges near tubes, adding ions or charged amino acids to the water phases on both sides of nanotubes, and directly applying electric fields through the whole nanotubes. Besides, the relevant applications using electric fields, such as flow switch, signal transmission, water pump, stable storage, etc., are also included. Finally, some issues in the relevant MD studies are presented.

Contents
1 Introduction
2 Methods of introducing electric fields in MD simulations and the relevant applications
2.1 Assigning charges on or near nanotubes
2.2 Introducing ions or charged amino acids to water phases on both sides of nanotubes
2.3 Directly applying electric fields through nanotubes
3 Influences of electric fields on the behaviors of water in nanotubes
3.1 Effects on water filling/empty equilibriums and phase-transition processes
3.2 Effects on water dipole orientations in nanotubes
3.3 Effects on water flux in nanotubes
3.4 Diffusion and permeation of water inside nanotubes under electric fields
4 Some issues in the relevant MD studies
5 Research prospects

CLC Number: 

[1] Denker B M, Smith B L, Kuhajda F P, Agre P. J. Biol. Chem., 1988, 263(30): 15634—15642
[2] Preston G M, Agre P. Proc. Natl. Acad. Sci. U. S. A., 1991, 88(24): 11110—11114
[3] Zeidel M L, Ambudkar S V, Smith B L, Agre P. Biochemistry, 1992, 31(33): 7436—7440
[4] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Nature, 2000, 407(6804): 599—605
[5] Agre P. Angew. Chem. Int. Ed., 2004, 43(33): 4278—4290
[6] De Groot B L, Grubmüller H. Science, 2001, 294(5550): 2353—2357
[7] Tajkhorshid E, Nollert P, Jensen M Ø, Miercke L J W, O'Connell J, Stroud R M, Schulten K. Science, 2002, 296(5567): 525—530
[8] Jensen M Ø, Tajkhorshid E, Schulten K. Biophys. J., 2003, 85(5): 2884—2899
[9] Hub J S, Aponte-Santamaria C, Grubmüller H, De Groot B L. Biophys. J., 2010, 99(12): 97—99
[10] Raghunathan A V, Aluru N R. Phys. Rev. Lett., 2006, 97(2): art. no. 024501
[11] Wan R Z, Li J Y, Lu H J, Fang H P. J. Am. Chem. Soc., 2005, 127(19): 7166—7170
[12] Service R F. Science, 2006, 313(5790): 1088—1090
[13] Majumder M, Chopra N, Andrews R, Hinds B. Nature, 2005, 438(44): 930
[14] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O. Science, 2006, 312: 1034—1037
[15] Ghosh S, Sood A K, Kumar N. Science, 2003, 299(5609): 1042—1044
[16] Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(52): 20719—20724
[17] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P. Nanotechnol., 2007, 2: 709—712
[18] Tu Y S, Zhou R Z, Fang H P. Nanoscale, 2010, 2: 1976—1983
[19] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R Z. PNAS, 2007, 104(10): 3687—3692
[20] Zhu F Q, Schulten K. Biophys. J., 2003, 85(1): 236—244
[21] Zhu F Q, Tajkhorshid E, Schulten K. Phys. Rev. Lett., 2004, 93: art. no. 224501
[22] Thomas J A, McGaughey A J H. Phys. Rev. Lett., 2009, 102(18): art. no. 184502
[23] Kalra A, Garde S, Hummer G. PNAS, 2003, 100(18): 10175—10180
[24] Hummer G, Rasalash J C, Noworyta J P. Nature, 2001, 414: 188—190
[25] Gong X J, Fang H P. Chinese Phys. B, 2008, 17(7): 2739—2744
[26] Wan R Z, Hu J, Fang H P. Sci. China-Phys. Mech. Astron., 2012, 55(5): 751—756
[27] Hinds B. Nanotechnol., 2007, 2: 673—674
[28] Wang Y, Zhao Y J, Huang J P. Chin. Phys. B, 2012, 21(7): art. no. 076102
[29] Liu L, Qiao Y, Chen X. Appl. Phys. Lett., 2008, 92(10): art. no. 101927
[30] Huang B D, Xia Y Y, Zhao M W, Li F, Liu X D, Ji Y J, Song C. J. Chem. Phys., 2005, 122: art. no. 084708
[31] Jorge S Q, Markus P I, Ghadiri M R. J. Am. Chem. Soc., 2002, 124: 10004—10005
[32] Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B. J. Appl. Phys., 2012, 111: art. no. 114304
[33] Dzubiella J, Hansen J P. J. Chem. Phys., 2005, 122: art. no. 234706
[34] Dzubiella J, Allen R J, Hansen J P. J. Chem. Phys., 2004, 120(11): 5001—5004
[35] Suk M E, AluruN R. Phys. Chem. Chem. Phys., 2009, 11: 8614—8619
[36] Garate J A, English N J, MacElroy J M D. J. Chem. Phys., 2009, 131: art. no. 114508
[37] English N J, Garate J A, MacElroy J M D. Carbon Nanotubes-Growth and Applications. InTech, 2011. 299—324
[38] English N J, MacElroy J M D. J. Chem. Phys., 2003, 119: 11806—11813
[39] Sigalov G, Comer J, Timp G, Aksimentiev A. Nano Lett., 2008, 8: 56—63
[40] Xu D, Phillips J C, Schulten K. J. Phys. Chem., 1996, 100(29): 12108—12121
[41] Garate J A, English N J, MacElroy J M D. Molec. Sim., 2009, 35: 3—12
[42] Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P. Phys. Chem. Chem. Phys., 2009, 11: 9898—9902
[43] Su J Y, Guo H X. ACS Nano, 2011, 5(1): 351—359
[44] Fu Z M, Luo Y, Ma J P, Wei G H. J. Chem. Phys., 2011, 134(15): art. no. 154507
[45] Wang Y, Zhao Y J, Huang J P. J. Phys. Chem. B, 2011, 115(45): 13275—13279
[46] Figueras L, Faraudo J. Tuning Water Transport in Carbon Nanotubes with A Strong Perpendicular Electricfield. (2011-06-03). .http: //www. ffn. ub. es/fises11/sites/default/files/PDF/figueras_la_peruta_luis_alfonso. pdf
[47] Figueras L, Faraudo J. Molec. Sim., 2012, 38(1): 23—25
[48] Crozier P S, Rowley R L, Holladay N B, Henderson D, Busath D D. Phys. Rev. Lett., 2001, 86(11): 2467—2470
[49] Chung S H, Allen T W, Kuyucak S. Biophys. J., 2002, 83(1): 263—277
[50] Waghe A, Rasaiah J C, Hummer G. J. Chem. Phys., 2002, 117: 10789—10795
[51] Vaitheeswaran S, Rasaiah J C, Hummer G. J. Chem. Phys., 2004, 121(16): 7955—7965
[52] Zuo G C, Shen R, Ma S J, Guo W L. J. Am. Chem. Soc., 2010, 4(1): 205—210
[53] Fang H P, Wan R Z, Gong X J, Lu H J, Li S Y. J. Phys. D: Appl. Phys., 2008, 41: art. no. 103002
[54] Zimmerli U, Gonnet P G, Walther J H, Koumoutsakos P. Nano Lett., 2005, 5(6): 1017—1022
[55] Podeszwa R, Buch V. Phys. Rev. Lett., 1999, 83(22): 4570—4573
[56] Dellago C, Naor M M, Hummer G. Phys. Rev. Lett., 2003, 90: art. no. 105902
[57] Zhu F Q, Tajkhorshid E, Schulten K. Phys. Rev. Lett., 2004, 93(22): art. no. 224501
[58] Liu B, Li X Y, Li B L, Xu B Q, Zhao Y L. Nano Lett., 2009, 9(4): 1386—1394
[59] Joseph S, Aluru N R. Phys. Rev. Lett., 2008, 101(6): art. no. 064502
[60] Berezhkovskii A, Hummer G. Phys. Rev. Lett., 2002, 89(6): art. no. 064503
[61] Liu J, Fan J F, Tang M, Cen M, Yan J F, Liu Z, Zhou W Q. J. Phys. Chem. B, 2010, 114: 12183—12192
[62] Tajkhorshid E, Zhu F Q, Schulten K. Handbook of Materials Modeling. Netherlands: Springer-Verlag, 2005. 1797—1822
[63] Portella G, Pohl P, de Groot B L. Biophys. J., 2007, 92(11): 3930—3937
[64] Portella G, de Groot B L. Biophys. J., 2009, 96(3): 925—938
[65] Jirasak W E, Markus S M, Cristiano D, Mikko K. Nanotechnol., 2010, 5: 555—557
[66] Bonthuis D J, Rinne K F, Falk K, Nadir K C, Horinek D, Nihat B A, Bocquet L, Netz R R. J. Phys.: Condens. Matter, 2011, 23: art. no. 184110
[67] Engels M, Bashford D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117: 9151—9158
[68] 唐敏(Tang M), 樊建芬(Fan J F), 刘健(Liu J), 何梁君(He L J), 何珂(He K). 化学进展(Progress in Chemistry), 2010, 22(4): 648—652
[69] Gopalan P, Ponmalai K. J. Mol. Model, 2008, 14: 1147—1157
[70] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. A, 2010, 114: 2376—2383
[71] Cambre S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W. Phys. Rev. Lett., 2009, 104: art. no. 207401
[72] Qiao Y, Liu L, Chen X. Nano Lett., 2009, 9(3): 984—988
[1] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[2] Liang He, Caiping Tan, Qian Cao, Zongwan Mao. Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment [J]. Progress in Chemistry, 2018, 30(10): 1548-1556.
[3] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[4] Xinda Yang, Qin Jiang, Pengfei Shi*. Two-Photon Absorptive Multinuclear Complexes [J]. Progress in Chemistry, 2018, 30(8): 1172-1185.
[5] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[6] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[7] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[8] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[9] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[10] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[11] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[12] Qian Zhao, Shenghua Li, Yu Liu*. Construction and Functions of Supramolecular Cyclodextrin Gels [J]. Progress in Chemistry, 2018, 30(5): 673-683.
[13] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[14] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[15] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.