中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1751-1762 DOI: 10.7536/PC130135 Previous Articles   Next Articles

In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers

Tian Yu1, Zhu Caizhen2, Gong Jinghua1, Ma Jinghong1, Yang Shuguang1, Xu Jian1   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China;
    2. Shenzhen Key Laboratory of Functional Polymers, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
  • Received: Revised: Online: Published:
PDF ( 1138 ) Cited
Export

EndNote

Ris

BibTeX

Fiber is the complex system consisting of diverse microscopic structures with the complicated changing law. The formation of artificial fibers is the multi-component, nonequilibrium and nonlinear process. While only static structure information of fibers can be obtained by using the traditional X-ray measurement technique. In order to take a deep look into the formation and evolution process of materials' structure during the processing and using procedure, a novel research method with high time and space resolution should be established. In situ X-ray measurement technique has received wide attention and developed rapidly since it was brought forth firstly. Compared with the traditional X-ray measurement technique, in situ measurement can detect the process of structure's formation and evolution in a more direct and precise way. Because of the outstanding characteristics of high brightness, high collimation degree of synchrotron radiation, the advantages like high time resolution and high space resolution of in situ X-ray measurement by using synchrotron radiation can be fully exploited to reveal the dynamic evolution process and microscopic scale structures of materials. In this review, combined with the domestic and international researchers' specific works, the research about in situ X-ray measurement of fibers with the application of synchrotron radiation was introduced, including the process of fibers' formation and drawing of post-treatment.

Contents
1 Introduction
2 In situ studies on process of fiber formation
2.1 In situ studies on melt-spinning process of fibers
2.2 In situ studies on other methods of spinning process
3 In situ studies on post-treatment process and stretching process of fibers
3.1 High performance fibers
3.2 Conventional fibers
3.3 Natural fibers
4 In situ studies on other aspects
5 Conclusions

CLC Number: 

[1] 晋勇(Jin Y), 孙小松(Song X S), 薛屺(Xue Q). X射线衍射分析技术(X-ray Diffraction Analysis Technology). 北京: 国防工业出版社(Beijing: National Defense Industry Press), 2008. 10—13
[2] 马礼敦(Ma L D). 近代X射线多晶体衍射——实验技术与数据分析(Modern X-ray Diffraction of Polycrystal——Experimental Techniques and Data Analyses). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 132—137
[3] Chappel F P, Culpin M F, Gosden R G, Tranter T G. Journal of Applied Chemistry, 1964, 14: 12—19
[4] Katayama K, Amano T, Nakamura K. Colloid and Polymer Science, 1968, 226(2): 125—134
[5] Dees J R, Spruiell J E. Journal of Applied Polymer Science, 1974, 18: 1053—1078
[6] Bankar V G, Spruiell J E, White J L. Journal of Applied Polymer Science, 1977, 21: 2341—2358
[7] Ellison M S, Lopes P E, Pennington W T. Journal of Engineered Fibers and Fabrics, 2008, 3: 10—21
[8] Cakmak M, Teitge A, Zachmann H G, White J L. Journal of Polymer Science Part B: Polymer Physics, 1993, 31: 371—381
[9] Samon J M, Schultz J M, Wu J, Hsiao B, Yeh F, Kole R. Journal of Polymer Science Part B: Polymer Physics, 1999, 37: 1277—1287
[10] Samon J M, Schultz J M, Hsiao B S, Seifert S, Stribeck N, Gurke I, Collins G, Saw C. Macromolecules, 1999, 32: 8121—8132
[11] Samon J M, Schultz J M, Hsiao B S, Khot S, Johnson H R. Polymer, 2001, 42: 1547—1559
[12] Samon J M, Schultz J M, Hsiao B S, Wu J, Khot S. Journal of Polymer Science Part B: Polymer Physics, 2000, 38: 1872—1882
[13] Schultz J M, Hsiao B S, Samon J M. Polymer, 2000, 41: 8887—8895
[14] Kolb R, Seifert S, Stribeck N, Zachmann H G. Polymer, 2000, 41: 1497—1505
[15] Kolb R, Seifert S, Stribeck N, Zachmann H G. Polymer, 2000, 41: 2931—2935
[16] Ran S, Burger C, Sics I, Yoon K, Fang D, Kim K, Avila-Orta C, Keum J, Chu B, Hsiao B S, Cookson D, Shultz D, Lee M, Viccaro J, Ohta Y. Colloid and Polymer Science, 2004, 282: 802—809
[17] Ran S, Burger C, Fang D, Zong X, Cruz S, Chu B, Hsiao B S, Bubeck R A, Yabuki K, Teramoto Y, Martin D C, Johnson M A, Cunniff P M. Macromolecules, 2002, 35: 433—439
[18] Ran S, Burger C, Fang D, Zong X, Chu B, Hsiao B S, Ohta Y, Yabuki K, Cunniff P M. Macromolecules, 2002, 35(27): 9851—9853
[19] Rein D M, Shavit L, Khalfin R L, Cohen Y, Terry A, Rastogi S. Journal of Polymer Science Part B: Polymer Physics, 2004, 42: 53—59
[20] Ran S, Fang D, Zong X, Hsiao B S, Chu B, Cunniff P M. Polymer, 2001, 42: 1601—1612
[21] Thünemann A F, Ruland W. Macromolecules, 2000, 33: 2626—2631
[22] Thünemann A F, Ruland W. Macromolecules, 2000, 33: 1848—1852
[23] Rennhofer H, Loidl D, Puchegger S, Peterlik H. Carbon, 2010, 48: 964—971
[24] 高学平(Gao X P), 朱波(Zhu B), 于宽(Yu K). 功能材料(Journal of Functional Materials), 2012, 22(43): 3118—3122
[25] Zhu C, Liu X, Yu X, Zhao N, Liu J, Xu J. Carbon, 2012, 50: 235—243
[26] Kobayashi T, Sumiya K, Fujii Y, Fujie M, Takahagi T, Tashiro K. Carbon, 2012, 50: 1163—1169
[27] Kim K, Aida R, Kang Y, Ohkoshi Y, Gotoh Y, Nagura M, Urakawa H. Polymer, 2009, 50: 4429—4431
[28] Kim K, Kang Y, Yokoyama A, Ikaga T, Ohkoshi Y, Wataoka I, Urakawa H. Polymer Journal, 2012, 44: 1030—1035
[29] Wu J, Schultz J M, Samon J M, Pangelinan A B, Chuah H H. Polymer, 2001, 42: 7141—7151
[30] Wu J, Schultz J M, Samon J M, Pangelinan A B, Chuah H H. Polymer, 2001, 42: 7161—7170
[31] Wu J, Schultz J M, Yeh F, Hsiao B S, Chu B. Macromolecules, 2000, 33: 1765—1777
[32] Samon J M, Schultz J M, Hsiao B S. Polymer, 2000, 41: 2169—2182
[33] Ran S, Fang D, Sics I, Toki S, Hsiao B S, Chu B. Review of Scientific Instruments, 2003, 74(6): 3087—3092
[34] Kang Y, Kim K, Ikehata S, Ohkoshi Y, Gotoh Y, Nagura M, Urakawa H. Polymer, 2011, 52: 2044—2050
[35] Kang Y, Kim K, Ikehata S, Ohkoshi Y, Gotoh Y, Nagura M, Koide M, Urakawa H. Polymer, 2010, 42: 657—662
[36] Shioya M, Kawazoe T, Okazaki R, Suei T, Sakurai S, Yamamoto K, Kikutani T. Macromolecules, 2008, 41: 4758—4765
[37] Martinschitz K J, Boesecke P, Garvey C J, Gindl W, Keckes J. Journal of Material Science, 2008, 43: 350—356
[38] Crawshaw J, Cameron R E. Polymer, 2000, 41: 4691—4698
[39] Crawshaw J, Bras W, Mant G R, Cameron R E. Journal of Applied Polymer Science, 2002, 83: 1209—1218
[40] Grubb D T, Jelinski L W. Macromolecules, 1997, 30: 2860—2867
[41] Riekel C, Müller M, Vollrath F. Macromolecules, 1999, 32: 4464—4466
[42] Seydel T, Klln K, Krasnov I, Diddens I, Hauptmann N, Helms G, Ogurreck M, Kang S, Koza M M, Müller M. Macromolecules, 2007, 40: 1035—1042
[43] 张瑞静(Zhang R J), 邵春光(Shao C G), 李倩(Li Q), 曹伟(Cao W), 张阳(Zhang Y), 刘成刚(Liu C G), 申长雨(Shen C Y). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2012, 28(9): 116—119
[44] Riekel C, Davies R J. Current Opinion in Colloid & Interface Science, 2005, 9: 396—403
[45] Ratner S, Weinberg A, Wachtel E, Moret P M, Marom G. Macromolecular Rapid Commun., 2004, 25: 1150—1154
[46] Davies R J, Burghammer M, Riekel C. Macromolecules, 2007, 40: 5038—5046
[47] Kobayashi T, Sumiya K, Fukuba Y, Fujie M, Takahagi T, Tashiro K. Carbon, 2011, 49: 1646—1652
[48] Kobayashi T, Sumiya K, Fuji Y, Fujie M, Takahagi T, Tashiro T. Carbon, 2013, 53: 29—37
[1] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[2] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[3] Chen Zhou, Juntao Wu*. Bioinspired Micro-Nano Fibrous Adhesion Materials [J]. Progress in Chemistry, 2018, 30(12): 1863-1873.
[4] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[5] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*. Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(9): 1127-1141.
[6] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[7] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.
[8] Wang Yihan, Wakisaka Minato. Nanofiber Fabrication Techniques and Its Applicability to Chitosan [J]. Progress in Chemistry, 2014, 26(11): 1821-1831.
[9] Hou Jiazi, Zhang Wanxi, Guan Dongbo, Sun Xiaoping, Li Lili* . Electrospinning in Preparation of Modified Cellulose Acetate [J]. Progress in Chemistry, 2012, 24(12): 2359-2366.
[10] Liu Ruilai, Liu Haiqing, Liu Junshao, Jiang Huihua. Fabrication of Patterned Inorganic Nanofibers by Electrospinning [J]. Progress in Chemistry, 2012, 24(08): 1484-1496.
[11] Zhou Ying, Lin Yuanhua, Greta R. Patzke. Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials [J]. Progress in Chemistry, 2012, 24(08): 1583-1591.
[12] Li Xingliang, Song Qiang, Liu Bijun, Liu Chunxia, Wang Hang, Geng Junxia, Chen Zhen, Liu Ning, Li Shoujian. Adsorption of Uranium by Carbon Materials from Aqueous Solutions [J]. Progress in Chemistry, 2011, 23(7): 1446-1453.
[13] Qu Ying, Li Yufeng, Chen Chunying. Synchrotron Radiation and Related Nuclear Analytical Techniques for the Study on Biological Effects of Nanomaterials [J]. Progress in Chemistry, 2011, 23(7): 1534-1546.
[14] Gong Guangming, Wu Juntao, Jiang Lei. Novel Polyimide Materials Produced by Electrospinning [J]. Progress in Chemistry, 2011, 23(4): 750-759.
[15] . Application of Synchrotron Radiation in Supramolecule Self-assembly [J]. Progress in Chemistry, 2010, 22(06): 1177-1184.