中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1648-1655 DOI: 10.7536/PC130134 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Electrochemical Reduction of NOx with Solid Oxide Electrolysis Cell

Cao Tianyu, Shi Yixiang, Cai Ningsheng   

  1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 614 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemical reduction of NOx pollutant based on solid oxide electrolysis cells (SOEC) is one of the promising technologies for post-combustion NOx emission control. NOx can be splitted with electric current instead of reductants in SOEC. This technology can avoid the risk of secondary pollution due to the leakage of reductants and can effectively reduce the sub-system for reductant storage and conversion which is usually complicated and space consuming. The working principles of SOECs for NOx reduction, the NOx conversion electrode materials, the SOEC structure features and the construction of SOEC stacks are summarized in details. The state of art, the key issues and the forefront of research are reviewed. Considering the characteristics of the NOx decomposition reaction, the performance evaluation indexes of NOx electrochemical reduction cell are proposed. Several novel concepts for practical cell designing such as additional electro-catalyst layer, porous electrolyte, symmetrical electrodes and the NOx storage agent are illustrated. The potential developing direction for NOx electrochemical reduction in SOEC is discussed.

Contents
1 Introduction
2 NOx reduction on SOECs
2.1 Basic theory
2.2 Judgments of cell performance
3 NOx reduction electrode materials
3.1 Noble metal electrodes
3.2 Mixed oxide electrodes
3.3 Perovskite electrodes
4 Art of NOx electrolyzer designing
4.1 Different types of NOx electrolyzers
4.2 Electrochemical NOx reduction stacks
5 Prospect of NOx electrolyzer researching
5.1 Mechanism of NOx electrochemical reduction
5.2 Material research
5.3 Principles of NOx electrolyzer designing

CLC Number: 

[1] Wark K, Warner C F, Davis W T. Air Pollution: its Origin and Control. 3rd ed. USA, Addison Wesley Longman, 1998
[2] 王睿(Wang R), 吴丹( Wu D), 赵大传( Zhao D C), 于慧(Yu H), 赵海霞(Zhao H X). 现代化工(Modern Chemical Industry), 2006, 26( Z2): 120—123
[3] Huang T J, Wang C H. Chemical Engineering Journal, 2011, 173(2): 530— 535
[4] Hansen K K. Applied Catalysis B: Environmental, 2005, 58(1/2): 33—39
[5] Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 93(3/4): 309—314
[6] Hansen K K. Applied Catalysis B: Environmental, 2010, 100(3/4): 427—432
[7] Bredikhin S, Matsuda K, Maeda K, Awano M. Solid State Ionics, 2002, 149(3/4): 327—333
[8] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153 (11): D167—D170
[9] Pancharatnam S, Huggins R A, Mason D M. Journal of The Electrochemical Society, 1975, 122(7): 869—875
[10] Gür T M, Huggins R A. Journal of The Electrochemical Society, 1979, 126 (6): 1067—1075
[11] Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 93 (1/2): 17—31
[12] Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 104 (1/2): 97—108
[13] Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 19—29
[14] Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 31—39
[15] Hibino T. Chemistry Letters, 1994, 23(5): 927—930
[16] Hansen K K. Journal of Applied Electrochemistry, 2008, 38(5): 591—595
[17] Hiramatsu T, Bredikhin S I, Katayama S, Shiono O, Hamamolto K, Fujishiro Y, Awano M. Journal of Electroceramics, 2004, 13(1/3): 865—870
[18] Bredikhin S, Maeda S, Awano M. Solid State Ionics, 2001, 144(1/2): 1—9
[19] Bredikhin S, Maeda K, Awano M. Journal of The Electrochemical Society, 2001, 148 (10): D133—D138
[20] Bredikhin S, Maeda K, Awano M. Solid State Ionics, 2002, 152/153: 727— 733
[21] Bredikhin S, Abrosimova G, Aronin A, Hamamoto K, Fujishiro Y, Katayama S, Awano M. Journal of The Electrochemical Society, 2004, 151(12): J95—J99
[22] Bredikhin S, Hamamoto K, Fujishiro Y, Awano M. Ionics, 2009, 15(3): 285—299
[23] Awano M, Bredikhin S, Aronin A, Abrosimova G, Katayama S, Hiramatsu T. Solid State Ionics, 2004, 175(1/4): 605—608
[24] Aronin A, Abrosimova G, Bredikhin S, Matsuda K, Maeda K. Journal of the American Ceramic Society, 2005, 88 (5): 1180—1185
[25] Awano M, Fujishiro Y, Hamamoto K, Katayama S, Bredikhin S. International Journal of Applied Ceramic Technology, 2004, 1(3): 277—286
[26] Bredikhin S, Abrosimova S, Aronin A, Awano M. Ionics, 2006, 12(1): 33—39
[27] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2007, 154 (9): F172—F175
[28] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153(11): D167—D170
[29] Reinhardt G, Wiemhfer H D, Gpel W. Ionics, 1995, 1(1): 32—39
[30] Brstrup F, Hansen K K. Journal of Applied Electrochemistry, 2009, 39(12): 2369—2374
[31] Zhu J J, Thomas A. Applied Catalysis B: Environmental, 2009, 92 (3/4): 225—233
[32] Huang T J, Chou C L. Electrochemistry Communications, 2009, 11(2): 477—480
[33] Hwang H J, Moon J W, Moon J. Journal of the American Ceramic Society, 2005, 88(1): 79—84
[34] Traulsen M L. Electrochemical reduction of NO</em>x. Doctoral Dissertation of Technical University of Denmark, 2012
[35] Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K. Catalysis Today, 1996, 27(1/2): 63—69
[36] Toops T J, Smith D B, Epling E S, Parks J E, Partridge W P. Applied Catalysis B: Environmental, 2005, 58(3/4): 255—264
[37] Lesage T, Saussey J, Malo S, Hervieu M, Hedouin C, Blanchard G, Daturi M. Applied Catalysis B: Environmental, 2007, 72(1/2): 166—177
[38] MacLeod N, Williams F J, Tikhov M S, Lambert R M. Angewandte Chemie International Edition, 2005, 44(24): 3730—3732
[39] Lucas-Consuegra A, Caravaca A, Sanchez P, Dorado F, Valverde J L. Journal of Catalysis, 2008, 259(1): 54—65
[40] Lucas-Consuegra A, Caravaca A, Dorado F, Valverde J L. Catalysis Today, 2009, 146(3/4): 330—335
[41] Teraoka Y, Kanada K, Kagawa S. Applied Catalysis B: Environmental, 2001, 34 (1): 73—78
[42] Shangguan W F, Teraoka Y, Kagawa S. Applied Catalysis B: Environmental, 1998, 16 (2): 149—154
[43] Epling W S, Campbell L E, Yezerets A, Currier N W, Parks J E. Catalysis Reviews, 2004, 46(2): 163—245
[44] Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P. The Journal of Physical Chemistry B, 2001, 105 (51): 12732—12745
[45] Westerberg B, Fridell E. Journal of Molecular Catalysis A: Chemical, 2001, 165 (1/2): 249—263
[46] Simonsen V L E, Johnsen M M, Hansen K K. Topics in Catalysis, 2007, 45(1/4): 131—135
[47] Fricke R, Schreier E, Eckelt R, Richter M, Trunschke A. Topics in Catalysis, 2004, 30/31 (1/4): 193—198
[48] Lu C, Sholklapper T Z, Jacobson C P, Visco S J, Jonghe L C. Journal of The Electrochemical Society, 2006, 153 (6): A1115—A1119
[49] Jiang S P, Duan Y Y, Love J G. Journal of The Electrochemical Society, 2002, 149 (9): A1175—A1183
[50] Hansen K K, Wandel M, Liu Y L, Mogensen M. Electrochimica Acta, 2010, 55 (15): 4606—4609
[51] Thomas J M, Thomas W J. Principles and Practice of Heterogenous Catalysis. Weinheim: VCH Verlagsgesellschaft mbH, 1997
[52] Lee H Y, Cho W S, Oh S M, Wiemhofer H D, Gopel W. Journal of The Electrochemical Society, 1995, 142(8): 2659—2664
[53] Werchmeister R M L, Hansen K K, Mogensen M. Journal of The Electrochemical Society, 2010, 157 (5): 35—42
[54] Nakamura T, Sakamoto Y, Saji K, Sakata J. Sensors and Actuators B, 2003, 93 (1/3): 214—220
[55] Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 98 (3/4): 185—190
[56] Hamamoto K, Suzuki T, Fujishiro Y. Journal of The Electrochemical Society, 2011, 158 (8): B1050—B1053
[57] Katayama S, Hiramatsu T, Shiono O, Hamamoto K, Fujishiro Y, Awano M. Journal of the Ceramic of Janpan, 2004, 112(5): S1059—S1062
[58] Yosihara Y, Shinoda W, Tominada K. Development of ECR (Electro-Chemical Reduction) System for Simultaneous Reduction of NOx and PM in Diesel Exhaust. Workshop in Catalytic and Electro-Catalytic Flue Gas Purification. Nagoya, Japan, 2011.9
[59] Werchmeister R M L. NO Conversion Electrocatalysts. Doctoral Dissertation of Technical University of Denmark, 2010
[60] Traulsen M L, Andersen K B, Hansen K K. J. Mater. Chem., 2012, 22(23): 11792—11800
[61] He Z, Andersen K B, Keel L, Nygaard F B, Menon M, Hansen K K. Ionics, 2009, 15(4): 427—431
[62] Bredikhin S, Awano M. Electrochemical Cells-New Advances in Fundamental Researches and Applications. Shao Y, Ed, InTech, 2012
[63] Hamamoto K. Electrochemical decomposition of NO</em>x. Topsφe Catalysis Forum: Catalysis in new environmental processes. Munkerupgaard, Denmark. 2009.8

[1] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[2] Ye Xia, Xi Su, Li Chen, Shunbo Li, Yi Xu. Design and Application of Electrochemical Sensor in Cell Detection [J]. Progress in Chemistry, 2019, 31(8): 1129-1135.
[3] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[4] Liping Chen, Rong Yang, Yinglin Yan, Chaojiang Fan, Mangmang Shi, Yunhua Xu. The Control of Reduction Degree of Graphene Oxide [J]. Progress in Chemistry, 2018, 30(12): 1930-1941.
[5] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[6] Zhou Wenli, Xie Qingji, Lian Shixun. Photoelectrode Materials for Solar Water Splitting [J]. Progress in Chemistry, 2013, 25(12): 1989-1998.
[7] Xiao Hengyang, Di Feng, Che Jianfei, Xiao Yinghong. Surface Modification and Functionalization of Neural Electrodes [J]. Progress in Chemistry, 2013, 25(11): 1962-1972.
[8] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[9] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[10] Zhou Guanwei, He Yushi, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng. Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications [J]. Progress in Chemistry, 2012, 24(0203): 235-245.
[11] Chen Yiting, Huang Lu, Lin Qi. The Application of Heated Electrodes in Electrochemical Sensors [J]. Progress in Chemistry, 2011, 23(11): 2377-2388.
[12] . Research Progress of Hydrogel-modified Bio-Electrodes [J]. Progress in Chemistry, 2010, 22(06): 1195-1202.
[13] Liu Weiqing Hu Linhua Huo Zhipeng Dai Songyuan. Development and Application of Intensity Modulate Photocurrent Spectroscopy and Intensity Modulate Photovoltage Spectroscopy [J]. Progress in Chemistry, 2009, 21(6): 1085-1093.
[14] Mao Yanping Cai Lankun Zhang Lehua Hou Haiping Huang Guangtuan Liu Yongdi. Biocathodes in Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1672-1677.
[15]

Zheng Bing|Niu Haijun|Bai Xuduo**

. Organic Dye-sensitized Nanocrystalline Solar Cells [J]. Progress in Chemistry, 2008, 20(06): 828-840.