中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1625-1630 DOI: 10.7536/PC130132 Previous Articles   Next Articles

Study on Third-Order Nonlinear Optical Properties of Functional Complexes

Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei   

  1. The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received: Revised: Online: Published:
PDF ( 882 ) Cited
Export

EndNote

Ris

BibTeX

The nonlinear optical (NLO) properties of complex embody different characteristics with the traditional nonlinear materials due to the specificity of complex structures. Therefore, it has always been an important topic to research the influence factors of the nonlinear optical properties. By systematically investigating the influence of the metal ions or ligands on the third-order NLO properties of metal complexes, we found that both the metal ions and ligands could make important contributions to the NLO properties. The contribution that the metal ions and ligands make to the NLO properties could be determined by quantum chemical calculations,namely, their possession ratios in the frontier molecular orbital influence the nonlinear properties of complexes. In addition, our research revealed that Ag(I) complex possessed very strong third-order NLO properties,which points out the direction for the development of the third-order nonlinear optical materials.

Contents
1 The measurement of third-order nonlinear optical properties of complexes
2 The influence of the metal or ligand on the third-order nonlinear optical properties of metal complexes
3 The influence factors of third-order NLO performance for the metal complexes in theory
4 Ag complexes possess good nonlinear optical properties
5 Conclusion

CLC Number: 

[1] Franken P A, Hill A E, Peters C W. Phys. Rev. Lett., 1961, 7: 118—121
[2] 吴林(Wu L), 赵波(Zhao B). 大学化学(University Chemistry), 2002, 17 (6): 21—28
[3] 孟祥茹 (Meng X R), 赵金安 (Zhao J A), 侯红卫 (Hou H W), 米立伟 (Mi L W). 无机化学学报 (Chinese Journal of Inoganic Chemistry), 2003, 19 (1): 15—19
[4] Chung I, Kim M G, Joon I J, He J Q, Ketterson J B, Kanatz- idis M G. Agnew. Chem. Int. Ed., 2011, 50 (46): 10867—10870
[5] 孙玉玲 (Sun Y L), 王 新 (Wang X), 刘 杰 (Liu J), 蒋新星 (Jiang X X), 孙 瑾 (Sun J). 化工科技 (Science & Technology in Chemical Industry), 2011, 19 (5): 51—54
[6] Yu J C, Cui Y J, Wu C D, Yang Y, Wang Z Y, O'Keeffe M, Chen B L, Qian G D. Agnew. Chem. Int. Ed., 2012, 51 (42): 10542—10545
[7] Braga D, Grepioni F, Desiraju G R. Chem. Rev., 1998, 98 (4): 1375—1405
[8] Meng X R, Song Y L, Hou H W, Fan Y T, Li G, Zhu Y. Inorg. Chem., 2003, 42 (4): 1306—1315
[9] Wang Y, Cheng L T. J. Phys. Chem., 1992, 96(4): 1530—1532
[10] Ge P, Tang S H, Ji W, Shi S, Hou H W, Long D L, Xin X Q, Lu S F, Wu Q J. J. Phys. Chem. B, 1997, 101(1): 27—31
[11] Chen Z R, Hou H W, Xin X Q, Yu K B. Chem. Mater., 1995, 7(8): 1519—1524
[12] Hou H W, Wei Y L, Song Y L, Fan Y T, Zhu Y. Inorg. Chem., 2004, 43 (4): 1323—1327
[13] Hou H W, Meng X R, Song Y L, Fan Y T, Zhu Y, Lu H J, Du C X, Shao W H. Inorg. Chem., 2002, 41 (15): 4068—4075
[14] Li G, Song Y L, Hou H W, Li L K, Fan Y T, Zhu Y, Meng X R, Mi L W. Inorg. Chem., 2003, 42 (3): 913—920
[15] Hou H W, Song Y L, Xu H, Wei Y L, Fan Y T, Zhu Y, Li L K, Du C X. Macromolecules, 2003, 36 (4): 999—1008
[16] Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105 (8): 2999—3093
[17] Muhammad S, Janjua M R S A, Su Z M. J. Phys. Chem. C, 2009, 113 (28): 12551—12557
[18] Xu H L, Li Z R, Wu D, Wang B Q, Li Y, Gu F L, Aoki Y. J. Am. Chem. Soc., 2007, 129 (10): 2967—2970
[19] Muhammad S, Xu H L, Liao Y, Kan Y H, Sun Z M. J. Am. Chem. Soc., 2009, 131 (33): 11833—11840
[20] Champagne B, Plaquet A, Pozzo J L, Rodriguez V, Castet F. J. Am. Chem. Soc., 2012, 134(19): 8102—8103
[21] Torre G D, Vazquez P, Lopez F A, Torres T. Chem. Rev., 2004, 104 (9): 3723—3750
[22] Lee C, Yang W T, Parr R G. Phys. Rev. B, 1988, 37(2): 785—789
[23] Schlegel H B. J. Comput. Chem., 1982, 3(2): 214—218
[24] Hay P J, Wadt W R. J. Chem. Phys., 1985, 82(1): 299—310
[25] Hou H W, Wei Y L, Song Y L, Mi L W, Tang M S, Li L K, Fan Y T. Agnew. Chem. Int. Ed., 2005, 44 (37): 6067—6074
[26] Wu J, Song Y L, Zhang E P, Hou H W, Fan Y T, Zhu Y. Chem. Eur. J., 2006, 12 (22): 5823—5831
[27] Hou H W, Li G, Song Y L, Fan Y T, Zhu Y, Zhu L. Eur. J. Inorg. Chem., 2003, 2003 (12): 2325—2332
[28] Niu Y Y, Song Y L, Hou H W, Zhu Y. Inorg. Chem., 2005, 44 (7): 2553—2559
[29] Yu H, Xu Q F, Sun Z R, Ji S J, Chen J X, Liu Q, Lang J P, Tatsumi K. Chem. Comm., 2001, (24): 2614—2615
[30] Shi S, Ji W, Tang S H. J. Am. Chem. Soc., 1994, 116(8): 3615—3616
[31] Xu H, Song Y L, Meng X R, Hou H W, Fan Y T. J. Appl. Polym. Sci., 2012, 125 (1): 682—689
[32] Xu H, Song Y L, Meng X R, Hou H W, Tang M S, Fan Y T. Chem. Phys., 2009, 359 (2): 101—110
[33] Zhang S L, Zhang J P, Wong W T, Chen X M. J. Am. Chem. Soc., 2003, 125(23): 6882—6883
[1] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[2] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[3] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[4] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[5] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[6] Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao, Meiqin Zhang. Methods for Studying the Age Determination of Fingermarks [J]. Progress in Chemistry, 2019, 31(5): 654-666.
[7] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[8] Deng Yunpan, Yang Bo, Yu Gang, Zhuo Qiongfang, Deng Shubo, Zhang Hong. Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes [J]. Progress in Chemistry, 2016, 28(4): 564-576.
[9] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[10] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[11] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[12] Rao Lu, Jiang Yanxia, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang. Electrocatalytic Oxidation of Ethanol [J]. Progress in Chemistry, 2014, 26(05): 727-736.
[13] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[14] Ma Xuelu, Lei Ming. Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes [J]. Progress in Chemistry, 2013, 25(08): 1325-1333.
[15] Wang Zhipeng, Zhang Yan, Wang Xiaoqing*. Models in Metalloenzymes for Dioxygen Activation [J]. Progress in Chemistry, 2013, 25(06): 915-926.