中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1667-1680 DOI: 10.7536/PC130124 Previous Articles   Next Articles

Mechanism of Functional Molecules in Shape-Control Synthesis of Noble Metal Nanocrystal Catalysts

Chen Dehao1, Xu Changdeng2, Liu Zili1, Chen Ling1, Zhen Chunhua1, Sun Shigang1,2   

  1. 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xianmen University, Xiamen 361005, China;
    2. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 1011 ) Cited
Export

EndNote

Ris

BibTeX

Metal nanocrystal catalysts (abr. metal nanocatalysts) are widely used in chemical and energy industries. The rare and precious metals as platinum are actually irreplaceable materials for catalysts, therefore to improve the activity and utilization efficiency of metal catalysts is always a challenge. Shape-control synthesis is an efficient way to tailor the surface structure of metal nanocrystal and therefore create particular functions in catalysis. The functional molecules such as stabilizers, capping agents, surfactants and additives, etc., are indispensable in the shape-control synthesis, especially in the wet chemistry route. In order to rationally design and synthesize metal nanocatalysts with high activity, high selectivity and high stability, it is important to explicit the roles and mechanisms of functional agents in shape-control synthesis. The functional agents usually assist in shape-control synthesis of nanocrystals through preferential adsorption on specific crystal facets, or etching particular crystal planes, or accelerating/inhibiting certain crystal growth directions. Although a mass body of metal nanocrystals with different shape have been synthesized, the explicit roles and mechanism of functional molecules in the shape-control synthesis are poorly defined and a full understanding is still elusive. The current paper reviews mainly the recent progress made in studies of mechanism of functional molecules in shape-control synthesis of metal nanocatalysts in the last two decades. The mechanism of preferential adsorption of functional agents and some basic strategy of optimizing the use of functional molecules in shape control synthesis of noble metal nanocatalysts are summarized.

Contents
1 Introduction
2 Shape-control synthesis of noble metal nanocrystal catalysts
2.1 Shape-control synthesis by electrochemical method
2.2 Shape-control synthesis by wet chemistry route
3 The role of functional molecules
3.1 Small molecules
3.2 Etching agents
3.3 Surfactants
3.4 Polymers
3.5 Biomolecules
4 Strategy of using functional molecules in shape-control synthesis of metal nanocatalysts
5 Conclusion and outlook

CLC Number: 

[1] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732—735
[2] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovi ć N M. Science, 2007, 315: 493—497
[3] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Chem. Sci., 2012, 3: 1157—1161
[4] Tian N, Zhou Z Y, Yu N F, Wang L Y, Sun S G. J. Am. Chem. Soc., 2010, 132: 7580—7581
[5] Zhou Z, Huang Z Z, Chen D J, Wang Q, Tian N, Sun S G. Angew. Chem. Int. Ed., 2009, 49: 411—414
[6] Chen Y X, Chen S P, Zhou Z Y, Tian N, Jiang Y X, Sun S G, Ding Y, Wang Z L. J. Am. Chem. Soc., 2009, 131: 10860—10862
[7] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Chem. Soc. Rev., 2011, 40: 4167—4185
[8] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2008, 48: 60—103
[9] Solla-Gullón J, Vidal-Iglesias F, Feliu J M. Annu. Rev. Phys. Chem., 2011, 107: 263—297
[10] Sau T K, Rogach A. Adv. Mater., 2009, 22: 1781—1804
[11] 田娜(Tian N). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2007
[12] Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin M F, Surwit R S, Ricquier D. Nature Genet., 1997, 15: 269—272
[13] Davis S M, Zaera F, Somorjai G A. J. Catal., 1984, 85: 206—223
[14] Grozovski V, Solla-Gullón J, Climent V, Herrero E, Feliu J M. J. Phys. Chem. C, 2010, 114: 13802—13812
[15] Vidal-Iglesias F J, Arán-Ais R M, Solla-Gullon J, Garnier E, Herrero E, Aldaz A, Feliu J M. Phys. Chem. Chem. Phys., 2012, 14: 10258—10265
[16] Adi ć R, Markovi ć N, Veovi ć V. J. Electroanal. Chem., 1984, 165: 105—120
[17] Somorjai G A, Park J Y. Catal. Lett., 2007, 115: 87—98
[18] Spencer N, Schoonmaker R, Somorjai G. Nature, 1981, 294: 643—644
[19] Choi K S. Dalton Trans., 2008, 5432—5438
[20] Chen Q S, Zhou Z Y, Vidal-Iglesias F J, Solla-Gullón J, Feliu J M, Sun S G. J. Am. Chem. Soc., 2011, 133: 12930—12933
[21] Liu H X, Tian N, Brandon M P, Zhou Z Y, Lin J L, Hardacre C, Lin W F, Sun S G. ACS Catal., 2012, 2: 708—715
[22] 黄小青(Huang X Q). 厦门大学博士论文 (Doctoral Dissertation of Xiamen University), 2011
[23] Murphy C J. Science, 2002, 298: 2139—2141
[24] Niu W, Zhang L, Xu G. ACS Nano, 2010, 4: 1987—1996
[25] Li Y Y, Jiang Y X, Chen M H, Liao H G, Huang R, Zhou Z Y, Tian N, Chen S P, Sun S G. Chem. Commun., 2012, 48: 9531—9533
[26] Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. J. Am. Chem. Soc., 2010, 132: 14012—14014
[27] Personick M L, Langille M R, Zhang J, Harris N, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2011, 133: 6170—6173
[28] Hong J W, Kim M, Kim Y, Han S W. Chem. -A Eur. J., 2012, 18: 16626—16630
[29] Lim B, Xiong Y, Xia Y. Angew. Chem. Int. Ed., 2007, 119: 9439—9442
[30] Zhu W, Yin A X, Zhang Y W, Yan C H. Chem. -A Eur. J., 2012, 18: 12222—12226
[31] Lu C L, Prasad K S, Wu H L, Ho J A, Huang M H. J. Am. Chem. Soc., 2010, 132: 14546—14553
[32] Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. J. Am. Chem. Soc., 2010, 132: 14012—14014
[33] Jin M, Zhang H, Xie Z, Xia Y. Angew. Chem. Int. Ed., 2011, 50: 7850—7854
[34] Yu T, Kim D Y, Zhang H, Xia Y. Angew. Chem. Int. Ed., 2011, 50: 2773—2777
[35] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134: 14542—14554
[36] Lu D, Tanaka K. J. Phys. Chem. B, 1997, 101: 4030—4034
[37] Lu D, Tanaka K. Surf. Sci., 1997, 373: L339—L344
[38] Lu D, Tanaka K. J. Solid State Electrochem., 1997, 1: 187—193
[39] Nielsch K, Müller F, Li A P, Gsele U. Adv. Mater., 2000, 12: 582—586
[40] Favier F, Walter E C, Zach M P, Benter T, Penner R M. Science, 2001, 293: 2227—2231
[41] Reetz M T, Helbig W. J. Am. Chem. Soc., 1994, 116: 7401—7402
[42] Reetz M T, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W. Chem. -A Eur. J., 2001, 7: 1084—1094
[43] Siegfried M J, Choi K S. Adv. Mater., 2004, 16: 1743—1746
[44] Siegfried M J, Choi K S. Angew. Chem. Int. Ed., 2005, 117: 3282—3287
[45] Siegfried M J, Choi K S. J. Am. Chem. Soc., 2006, 128: 10356—10357
[46] Liang D, Mallett J J, Zangari G. J. Electrochem. Soc., 2011, 158: D149—D157
[47] Leistner K, Fähler S, Schlörb H, Schultz L. Electrochem. Comm., 2006, 8: 916—920
[48] Rezaei M, Ghorbani M, Dolati A. Electrochim. Acta, 2010, 56: 483—490
[49] Hwang S M, Lee C H, Kim J J, Moffat T P. Electrochim. Acta, 2010, 55: 8938—8946
[50] Gomez E, Pane S, Valles E. Electrochim. Acta, 2005, 51: 146—153
[51] Zeng J, Zheng Y, Rycenga M, Tao J, Li Z Y, Zhang Q, Zhu Y, Xia Y. J. Am. Chem. Soc., 2010, 132: 8552—8553
[52] Zhang J, Fang J. J. Am. Chem. Soc., 2009, 131: 18543—18547
[53] Wu B, Zheng N, Fu G. Chem. Commun., 2010, 47: 1039—1041
[54] Chen M, Wu B, Yang J, Zheng N. Adv. Mater., 2012, 24: 862—879
[55] Wang C, Daimon H, Lee Y, Kim J, Sun S. J. Am. Chem. Soc., 2007, 129: 6974—6975
[56] Huang X, Tang S, Zhang H, Zhou Z, Zheng N. J. Am. Chem. Soc., 2009, 131: 13916—13917
[57] Huang X, Zhao Z, Fan J, Tan Y, Zheng N. J. Am. Chem. Soc., 2011, 133: 4718—4721
[58] Wang Y, Fang J. Angew. Chem. Int. Edit., 2011, 50: 992—993
[59] Zhang Q, Li N, Goebl J, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133: 18931—18939
[60] Kilin D S, Prezhdo O V, Xia Y. Chem. Phys. Lett., 2008, 458: 113—116
[61] Patungwasa W, Hodak J H. Mater. Chem. Phys., 2008, 108: 45—54
[62] Kou X, Zhang S, Tsung C K, Yeung M H, Shi Q, Stucky G D, Sun L, Wang J, Yan C. J. Phys. Chem. B, 2006, 110: 16377—16383
[63] Chen D H, Ye J Y, Xu C D, Li X, Li J T, Zhen C H, Tian N, Zhou Z Y, Sun S G. Sci. China. Chem., 2012, 55: 2353—2358
[64] Xiong Y, Chen J, Wiley B, Xia Y, Aloni S, Yin Y. J. Am. Chem. Soc., 2005, 127: 7332—7333
[65] Li C, Sato R, Kanehara M, Zeng H, Bando Y, Teranishi T. Angew. Chem. Int. Ed., 2009, 121: 7015—7019
[66] Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y. Nano Res., 2011, 4: 83—91
[67] Yuan Q, Zhou Z, Zhuang J, Wang X. Inorg. Chem., 2010, 49: 5515—5521
[68] Nakamura M, Hanioka Y, Ouchida W, Yamada M, Hoshi N. Chem. Phys. Chem., 2009, 10: 2719—2724
[69] Srivastava S C, Newman L. Inorg. Chem., 1966, 5: 1506—1510
[70] Zhang H, Jin M, Wang J, Li W, Camargo P H C, Kim M J, Yang D, Xie Z, Xia Y. J. Am. Chem. Soc., 2011, 133: 6078—6089
[71] Carrasquillo A, Jeng J J, Barriga R J, Temesghen W F, Soriaga M P. Inorg. Chim. Acta, 1997, 255: 249—254
[72] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P. Angew. Chem. Int. Ed., 2006, 118: 7988—7992
[73] Ma M, Zhang Y, Gu N. Colloids Surf. A, 2011, 373: 6—10
[74] Pham M D, Oudart Y, Baubet B, Verdon C, Thomazeau C. Oil & Gas. Sci. Technol., 2009, 64: 697—706
[75] Sau T K, Murphy C J. J. Am. Chem. Soc., 2004, 126: 8648—8649
[76] Nikoobakht B, El-Sayed M A. Chem. Mater., 2003, 15: 1957—1962
[77] Chu H C, Kuo C H, Huang M H. Inorg. Chim., 2006, 45: 808—813
[78] Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Appl. Surf. Sci., 2008, 254: 6289—6293
[79] Li J, Wang L, Liu L, Guo L, Han X, Zhang Z. Chem. Commun., 2010, 46: 5109—5111
[80] Zhang Y, Grass M E, Kuhn J N, Tao F, Habas S E, Huang W, Yang P, Somorjai G A. J. Am. Chem. Soc., 2008, 130: 5868—5869
[81] 李玲(Li L). 表面活性剂与纳米技术(Surfactant and Nanotechnology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004
[82] Song Y, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, Shelnutt J A. Nano Lett., 2007, 7: 3650—3655
[83] Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. J. Mater. Chem., 2002, 12: 1765—1770
[84] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105: 4065—4067
[85] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109: 13857—13870
[86] Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26: 10271—10276
[87] Bai X, Gao Y, Liu H, Zheng L. J. Phys. Chem. C, 2009, 113: 17730—17736
[88] Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17: 6368—6374
[89] Sui Z, Chen X, Wang L, Xu L, Zhuang W, Chai Y, Yang C. Physica E, 2006, 33: 308—314
[90] Kawasaki H, Nishimura K, Arakawa R. J. Phys. Chem. C, 2007, 111: 2683—2690
[91] Ahmadi T S, Wang Z L, Green T C, Henglein A, El-Sayed M A. Science, 1996, 272: 1924—1925
[92] Petroski J M, Wang Z L, Green T C, El-Sayed M A. J. Phys. Chem. B, 1998, 102: 3316—3320
[93] Washio I, Xiong Y, Yin Y, Xia Y. Adv. Mater., 2006, 18: 1745—1749
[94] Xia X, Zeng J, Oetjen L K, Li Q, Xia Y. J. Am. Chem. Soc., 2012, 134: 1793—1801
[95] Chen Y, Gu X, Nie C G, Jiang Z Y, Xie Z X, Lin C J. Chem. Commun., 2005, 4181—4183
[96] Song H, Kim F, Connor S, Somorjai G A, Yang P. J. Phys. Chem. B, 2005, 109: 188—193
[97] Flenniken M L, Uchida M, Liepold L, Kang S, Young M, Douglas T. Curr. Top. Microbiol. Immunol., 2009, 327: 71—93
[98] Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111: 3736—3827
[99] Whaley S R, English D, Hu E L, Barbara P F, Belcher A M. Nature, 2000, 405: 665—668
[100] Brown S, Sarikaya M, Johnson E. J. Mol. Biol., 2000, 299: 725—735
[101] Gugliotti L A, Feldheim D L, Eaton B E. Science, 2004, 304: 850—852
[102] Gugliotti L A, Feldheim D L, Eaton B E. J. Am. Chem. Soc., 2005, 127: 17814—17818
[103] Chiu C Y, Li Y, Ruan L, Ye X, Murray C B, Huang Y. Nature Chem., 2011, 3: 393—399
[104] Naik R R, Stringer S J, Agarwal G, Jones S E, Stone M O. Nature Mater., 2002, 1: 169—172
[105] Chen J, Lim B, Lee E P, Xia Y. Nano Today, 2009, 4: 81—95
[106] Yin A X, Min X Q, Zhu W, Wu H S, Zhang Y W, Yan C H. Chem. Commun., 2012, 48: 543—545
[107] Huang X, Li Y, Zhou H, Duan X, Huang Y. Nano Lett., 2012, 12: 4265—4270
[108] Zhang J, Zhang L, Jia Y, Chen G, Wang X, Kuang Q, Xie Z, Zheng L. Nano Res., 2012, 5: 618—629
[109] Xie S, Lu N, Xie Z, Wang J, Kim M J, Xia Y. Angew. Chem. Int. Ed., 2012, 51: 10266—10270
[110] Mulvihill M J, Ling X Y, Henzie J, Yang P. J. Am. Chem. Soc., 2009, 132: 268—274
[111] Liao H G, Cui L, Whitelam S, Zheng H. Science, 2012, 336: 1011—1014
[112] Monzó J, Koper M, Rodriguez P. Chem. Phys. Chem., 2012, 13: 709—715
[1] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.
[2] Hu Jun, Ju Yong. Novel Functional Molecules Containing Triterpenoid Units [J]. Progress in Chemistry, 2011, 23(01): 181-191.
[3] Guo Jian Zhuang Shun Wu Kaiqiang Yuan Yaofeng. Ferroceneacetylene: a Versatile Building Block in Optoelectronic Molecules [J]. Progress in Chemistry, 2009, 21(12): 2589-2594.